

Volume 64, Issue 2, 2020

Journal of Scientific Research

Institute of Science,

Banaras Hindu University, Varanasi, India.

 250 DOI: 10.37398/JSR.2020.640235

Abstract: In distributed systems, failure detectors are used to

monitor the processes and to reduce the risk of failures by detecting

them before system crashes. Accuracy and completeness are the key

attributes to measure the quality of failure detectors. Failure

detectors are said to be unreliable because sometimes they suspect a

correct process as a faulty process or they treat a faulty process as a

correct process. In this paper various failure detector algorithms

are discussed. A comprehensive study is presented based on

properties, methodologies used, the applicability of systems, and

outcomes of the failure detectors. The paper helps readers for the

enhancement of knowledge about the basics of failure detectors and

the different algorithms which are developed to solve the failure

detection problems of distributed systems.

Index Terms: Asynchronous System, Consensus, Distributed

Systems, Failure Detectors, Failure Detector Classes.

I. INTRODUCTION

Reliability is a key attribute to measure the quality of any

system. The reliability of a system depends on the less

probability of failures. A failure detector is used to detect the

failures in a system. In a distributed system, a failure detector is

a module or algorithm running at every process/node to collect

the operational states of other processes. The information

concerning the operational status of a process given by two

failure detectors may vary at dissimilar processes (Cortinas,

2011). In this situation, the reliability of the failure detector is

measured with the help of two abstract properties: completeness

and accuracy. Completeness is classified into strong

completeness and weak completeness, similarly, accuracy is

classified into strong accuracy, weak accuracy which is hard to

attain therefore it is further classified into eventual strong

accuracy and eventual weak accuracy. The combination of these

two abstract properties like Completeness and Accuracy form a

class of Failure detector which is shown in Table I (Chandra &

* Corresponding Author

Toueg, 1996). Each combination builds a different class of

failure detectors by using two completeness and four accuracy

properties. The conceptual view of unreliable failure detectors

was presented in Chandra and Toueg, 1996, for the reliable

distributed system. Sometimes, failure detectors suspect a

correct process as a faulty process or they treat a faulty process

as a correct process. Therefore, the failure detectors are said to

be unreliable due to their inaccuracy in detecting faulty

processes.

The conceptual view of failure detectors proposed by

Chandra and Toueg (1991) is used to solve consensus and other

related problems like reliable broadcast and atomic broadcast in

an asynchronous distributed system. A distributed system has a

set of processes coordinate with each other through message

passing. Asynchronous and failures are the fundamental issues

of distributed computing (Raynal, 2016).

Distributed systems are classified into two categories based

on their topological arrangement, and process or event

completion time. The first category consists of Fully connected

(Mesh), Partially connected, Hierarchical (Tree), Ring, and Star

topology-based distributed systems. The second category has

Synchronous, Asynchronous, and Partially-synchronous

systems, which are based on two-time attributes, the first one is

the message transmission time, and another is the task execution

time (Cortinas, 2011).

The primary issue in a distributed system is coordination. As

every component/node in the distributed system has only a

partial view of the global state of the system. That is why all the

processes have to agree on some value. The problem of

consensus is found to be similar to the agreement in which all

the participated processes propose some values then every

(correct) process has to agree on one of the proposed values

(Pease, Shostak, & Lamport, 1980). The problem of consensus is

solvable in the synchronous system by considering lower and

upper time bounds on processes’ processing speed and

communication delays (Lynch, 1996). But, in an asynchronous

A Comprehensive Study on Failure Detectors

of Distributed Systems

Bhavana Chaurasia* and Anshul Verma

Department of Computer Science, Banaras Hindu University, Varanasi. India.

chaurasia.bhawana93@gmail.com*, anshulverma87@gmail.com

Journal of Scientific Research, Volume 64, Issue 2, 2020

 251
Institute of Science, BHU Varanasi, India

system, consensus cannot deterministically be solved due to the

lack of proper time-bound on events. In an asynchronous system,

the condition of reliable failure detection cannot be fulfilled due

to its inefficiency to differentiate a crashed process and a slow

process (Fischer, Lynch, & Paterson, 1985). Dolev et. al. (1987)

examined 32 partial synchrony systems and proved that 4

systems out of those 32 systems can solve the problem of

consensus. Dwork et. al. (1988) assumed two partially

synchronous systems and proved that a consensus algorithm can

solve as long as f<n/2, where f denotes the number of faulty

processes and n denotes the number of total processes, and also

proposed some eventually synchronous consensus algorithms.

 The previously defined failure detectors are based on eight

failure detector classes and are used to solve the different types

of agreement problems like Consensus and other related

problems like Atomic Broadcast, k-set agreement, non-blocking

atomic commitment, and uniform reliable broadcast, etc. The

consensus is a model that describes a family of agreement

problems (Pease et. al., 1980; Turek and Shasha, 1992; Barborak

& Malek, 1993). A failure detector can detect different types of

failures such as crash failure, crash recovery failure, omission

failure, link failure, timing failure, and byzantine failure, and can

work for synchronous, asynchronous, or partially synchronous

systems. The readers can refer (Chandra and Toueg, 1992;

Chandra and Toung, 1996; Aguilera, Chen and Toueg, 1997;

Larrea et. al., 1999; Larrea, & Ferna´ndez, 2004; Gallet et. al.,

2007; Macêdo & Gorender, 2009; Soraluze et. al., 2011; Xiaohui

and Yan, 2014; Verma, et. al., 2016; Sozinov & Hammar, 2017;

Jiménez, López-Presa, & Martín-Rueda, 2020) articles to get

more information about the various failure detectors.

The rest of the paper is organized systematically, Section II

describes the system model and the basic terminologies. In

Section III, a detailed introduction of failure detectors and their

properties with failure detector classes are presented. Section IV

contains a detailed analysis and comparison of various types of

failure detector algorithms. The final section presents the

conclusion and future directions.

II. SYSTEM MODELS

Models are the building blocks to design and find the solution

for a given problem. It is a representation of a problem as well as

its solution. A good model has properties like accuracy and

traceability, which provides easiness for validation and

evaluation of the solution (Schneider, 1993). The components

are modeled in the distributed systems based on their possible

behavior.

The components of distribute system such as state, trace and

step are defined as follows: processes and channels are defined

as state and work as an individual component, traces represent

the behavior of a system which is also known as sequences of

states, and the transition between the states is known as a step

(Cortinas, 2011). It is very important to define the properties by

which any implementation should efficiently satisfy its

requirements. The properties are classified into two classes:

safety and liveness (Lamport, 1977). The identification of

properties of a system into these classes improves the better

understanding of those properties, better specifications,

subsequently possible and clear implementations, and proofs.

The liveness property implies that the process or event will

eventually produce a result. Similarly, the safety property

implies that a wrong result will never be executed. According to

the formal definitions of safety and liveness, the classification of

the properties of a dependable system can be done into one or

both classes (Alpern and Schneider, 1985). Many papers are

there for more information on safety & liveness properties

(Lamport, 1977 and 1979; Charron-Bost, Toueg, and Basu,

2000; Alpern and Schneider, 1985 and 1987; Benenson, Freiling,

Holz, Kesdogan, and Penso, 2006b).

A new property is presented by (Neiger and Toueg, 1993)

named as uniformity. It is quite interesting due to its nature. It is

considered that a process, which holds the uniform property, is

potentially correct because it does not fail (Hadzilacos and

Toueg, 1994).

A. Processes

The process is stated as a computational entity. In the

distributed system model, there is a set of processes ∏= {p1, p2,

p3… pn}, where ∏, n and p denote the set of processes, number

of processes in a set, and a process respectively. The set of

processes is finite and constant throughout the execution of the

system. All processes in the system are connected with the help

of pairwise bidirectional communicational channels in a fully

connected topology (Cortinas, 2011).

Processes may be characterized as correct processes that never

faced any failure and faulty processes that are affected by any

type of failure or crash. Correct processes are represented by c

and faulty processes are represented by f.

Time-driven and message-driven are the two classical

approaches of event generation. In the time-driven algorithms,

events generation implies the passage of time and measured by

clocks or times. In message-driven algorithms, event generation

only depends on message response.

B. Communication Channels/Links

An abstraction of the network is represented by

communication channels or links. The processes are

communicating with each other by sending messages to their

corresponding links. A unidirectional communication link allows

a one-way communication but a bidirectional communication

link allows two-way communication by providing a pair of links.

E.g., by a unidirectional link, a process p can only send

messages to another process q, but by a bidirectional link, both

the processes p and q can send messages to each other. The

omission of messages can be happened after receiving and

before delivering. Links can be differentiated based on their

Journal of Scientific Research, Volume 64, Issue 2, 2020

 252
Institute of Science, BHU Varanasi, India

properties such as reliable links, unreliable links, and fair lossy

links.

A reliable link is also known as a perfect link with the

properties no creation, no duplicity, and no loss, that means no

message is created, no message is received again, and every sent

message has to be received (Basu, Charron-Bost, and Toueg,

1996).

A link with the properties no creation, finite duplication, and

fair loss or fairness, is known as fair lossy link or fair-loss link.

No creation means that if a process q receives a message m, this

message m was sent by another process p. Finite duplication

states that a message m, which is sent by finite times from a

process p to process q, is also delivered to process q by the finite

times. Fair loss or fairness means a message m was sent from a

process p to correct process q by infinite times, whereas the

message m was eventually received by q from p just once. In the

crash failure model, a problem that is solved by using reliable

links can also be solved by using fair lossy links (Basu et. al.,

1996).

An eventually reliable link initially losses messages but after a

time all the messages sent from a process p via this link to

process q are eventually received. It has properties such as no

creation, no duplication, and finite loss.

C. Time and timing models

 Let us suppose, each process has a local clock which is used

for passage measurement. In a distributed system, sometimes it

is difficult to keep all the clocks in synchronous mode. The

logical time concept was proposed (Lamport, 1976) that allows

to abstract time. Every process augmented with a logical clock

that permits the ordering of events at that process. A discrete

global clock simply works as a functional device, events at

processes are related to global time but processes cannot directly

access to this clock.

 A synchronous system is defined by (Hadzilacos & Toung,

1994) in which every step of a process is bounded with time,

every send message is received within a given time-bound, and

every clock has a known bounded deviation from real-time.

 In an asynchronous system, there is no time-bound for

message transmission or task execution (Chandra & Toueg,

1996). Processes transmit the messages without any time-bound

therefore it is very difficult to decide whether the process is slow

or crashed.

 A partially synchronous system has features of both

synchronous and asynchronous systems (Dolev, Dwork, and

Stockmeyer, 1987). Initially, the partial synchronous system

does not have any time-bound for processing messages and

works as an asynchronous system. However, after a time it

creates time-bounds based on the time taken by the previous

events. This time is known as Global Stabilization Time (GST).

After using GST, this system acts as a synchronous system

therefore it is also known as an eventually synchronous system

(Dwork, Lynch, & Stockmeyer, 1988). A partial synchronous

timing model named as a theta model is proposed by (Widder

and Schmid, 2009). This model shows that after an unidentified

GST, the ratio between the shortest and largest time is bounded

for message transmission.

D. Process Failure Models

Processes are classified into two types, correct or faulty as

discussed above. The processes may be suffered from many

types of failures. Crash, crash-recovery, general omission, and

byzantine are some types of process failures found in a

distributed system.

Crash failures were firstly discussed in the context of

consensus (Lamport and Fischer, 1982; Hadzilacos and Toueg,

1994). When a process stops it’s working like execution, sending

or receiving messages, and when it becomes inactive then it is

called that the process is suffered from the crash failure. The

crash is permanent therefore there is no possibility of recovery.

This model is also known as a crash-stop or crash-prone model.

A fail-stop crash was discussed by (Schlichting & Schneider,

1983), it is a strong type of crash. If a process is suffered from

this type of crash than all the correct processes are learned about

this failure.

The crash- recovery model is an advanced version of the crash

failure model in which a crashed process can be recovered.

When a recovering process behaves like a new process, it forgets

the pre-crash information. To overcome this problem, processes

need stable storage to store the information which is accessed

later.

A general omission is a type of failure, which happens at a

process end due to loss of messages during transmission.

Omission failures help to model communication channels that

lose messages (Fich and Ruppert, 2003). This failure has two

types: send-omission and receive-omission. In send-omission

failure, a process executes the send-message instruction but the

message is not dispatched into the channel because it is deleted

in the out-going buffer of the process. Whereas, in receive-

omission failure, a message is received at its destination process

but never delivered to it because it is deleted in the in-coming

buffer of the process. A send-omission failure model is proposed

in (Hadzilacos and Toueg, 1994) in which processes suffer from

send-omission and do not recover. In the general omission

failure model, processes suffer from send omission as well as

received omission (Perry and Toueg, 1986).

Timing failure is a type of failure which is related to

contravention of time bounds in synchronous as well as partially

synchronous systems (Attiya and Welch, 2004; Coulouris,

Dollimore, and Kindberg, 2005).

In byzantine failure, a process makes arbitrary state transitions

and sends arbitrary messages instead of assigned messages, it

starts deviating from the given algorithm. This type of failure is

also called an arbitrary failure or malicious and is modeled as a

Journal of Scientific Research, Volume 64, Issue 2, 2020

 253
Institute of Science, BHU Varanasi, India

byzantine failure model (Lamport, Shostak, and Pease, 1982).

III. FAILURE DETECTORS

A failure detector is like an abstract module or device

established at each process so that it can provide information

related to the operational status of the other processes in the

system. The concept of failure detector was introduced by

(Chandra and Toueg, 1996), which is used to encapsulate timing

assumptions when solving the problem of consensus in

asynchronous systems and the list of suspected processes was

given as a result. Failure detectors are said to be unreliable due

to its wrong suspicion of processes, as they may suspect correct

processes in place of faulty processes. Completeness and

accuracy properties are used to measure the reliability of the

failure detectors (Chandra and Toueg, 1996). A detailed study of

failure detectors with crash failures is presented in (Nie et. al.,

2011). A layered structure of the process is proposed by

(Cortinas, 2011) has four layers as shown in (Figure 1).

Processes are provided by the transport layer with the capability

to send and receive messages through a communication channel.

Failure detector layer observes the processes and provides

probably unreliable information about the faulty processes to the

upper layer named as a consensus layer, which uses this

information to achieve agreement among correct processes.

After that the set of potential applications signified by the

application layer are benefitted from the consensus service.

Figure 1: Layered structure of process with the failure detector

(Cortinas, 2011)

Failure detectors which provide a list of suspected processes

are known as suspicion based failure detector, e.g. eventually

perfect failure detector symbolized as ◊P. Whereas, the failure

detectors which provide a list of non-suspected processes

(trusted processes) are known as trust-based failure detectors,

e.g. eventual leader failure detector symbolized as Ω (Hutle,

2005).

A. Formal Definitions

Failure detectors were introduced by (Chandra and Toueg, 1996)

for the crash failure model. The different types of failure models

have been discussed above. Some basic terminologies related to

failure detectors are defined as follows:

1) Failure Patterns: Process failure happens due to crashing.

The crash is permanent therefore crashed processes do not

recover. A failure pattern defined as a function F: T → 2∏,

where F(t) represents the set of processes that have been crashed

till time t. When a process is crashed, it does not recover that is

F(t) ⊆ F(t+1). Similarly, the set of processes is defined as ∏ = c

+ f where ∏, c, and f denote the set of processes, set of correct

processes, and set of faulty processes respectively.

2) Failure Detector History: According to (Chandra and

Toueg, 1996), failure detector history is defined as a function

that provides the list of suspected processes, which have been

suspected by a failure detector till a given time period.

Mathematically, failure detector history is defined as a function

H: ∏ × T→ R, where R=2∏ is a range, T is a time, ∏ is a set of

processes and H is a failure detector history.

3) Failure Detector: A failure detector D is defined as a

function D: F→D(F), where F and D(F) denote the failure

pattern and set of failure detector histories respectively. It maps

the failure pattern to a set of failure detector history. The

behavior of a failure detector for failure pattern was shown in

each respective history. Every process in a system has its local

failure detector module.

B. Failure Detector Properties

Failure detectors have two main properties: completeness and

accuracy (Chandra and Toueg, 1996). Completeness describes

the capability of a failure detector for detecting faulty processes,

whereas accuracy ensures that a failure detector should not

suspect a correct process as faulty. Both are the opposite of each

other. It is not beneficial to use both the properties individually.

Completeness:

There are two types of completeness properties (Chandra and

Toueg, 1996), which are satisfied by a failure detector D: ∀F,

∀H ∈ D (F). These properties are described in (Verma, Singh, &

Pattanaik, 2019) as follows:

 Strong Completeness: Eventually every process that crashes

is permanently suspected by every correct process. This

means every correct process will eventually and

permanently suspect every faulty process.

∃t ∈ T, ∀p ∈ F, ∀q ∈ C, ∀t′ ≥ t: p ∈ H (q, t′)

 Weak Completeness: Eventually every process that crashes

is permanently suspected by some correct process. This

means every faulty process will be eventually and

permanently suspected by at least one correct process.

∃t ∈ T, ∀p ∈ F, ∃q ∈ C, ∀t′ ≥ t: p ∈ H (q, t′)

Accuracy:

There are four variations of accuracy property (Chandra and

Toueg, 1996) that a failure detector D can satisfy: ∀F, ∀H ∈ D

(F).

Application Layer

Consensus

Transport Layer

Failure detector

Journal of Scientific Research, Volume 64, Issue 2, 2020

 254
Institute of Science, BHU Varanasi, India

 Strong Accuracy: No process is suspected before it crashes.

This means, no correct process can ever be suspected.

∀t ∈ T, ∀p, q ∈ (∏ − F (t)): p ∉ H (q, t)

 Weak Accuracy: Some correct process is never suspected.

This means some correct processes can be suspected.

∃p ∈ C, ∀t ∈ T, ∀q ∈ (∏ − F (t)): p ∉ H (q, t)

Since it was very difficult to achieve both the accuracy

properties so that (Chandra and Toueg, 1996) proposed an

eventual accuracy property which is further classified into two

more properties as follows:

 Eventual Strong Accuracy: There is a time after which

correct processes are not suspected by any correct process.

Means, eventually no false suspicion will be made.

∃t ∈ T, ∀t′ ≥ t, ∀p, q ∈ (∏ − F (t)): p ∉ H (q, t′)

 Eventual Weak Accuracy: There is a time after which some

correct process is never suspected by any correct process.

Means, eventually some false suspicion will not be made.

∃t ∈ T, ∃p ∈ (∏ − F (t)), ∀t′ ≥ t, ∀q ∈ (∏− F (t)): p ∉ H (q, t′)

C. Failure Detector Classes

Eight classes of failure detectors are defined with the

combination of two completeness and four accuracy properties

as shown in Table I (Chandra and Toueg, 1996).

Another failure detector class named “omega Ω” was

proposed by (Chandra, Hadzilacos, and Toueg, 1996), it

provides eventual agreement on a common and correct leader

among all correct processes in a system. The Ω is a trust-based

failure detector. The perfect failure detector P is said to be

reliable because it detects only faulty processes. Whereas, the

eventually perfect failure detector ◊P is unreliable because it

may suspect a correct process instead of a faulty process but

eventually it will not make any mistake.

D. Reducibility

The “weaker than” relation is used for the comparison of

failure detectors. With the help of an asynchronous algorithm,

failure detector D1 can be emulated by using another failure

detector D2, this implies D1 is weaker than D2 i.e. D1 ≤ D2.

Reducibility is achieved by using a reduction algorithm. The

failure detector D2 is reducible to D1 using a reduction

algorithm. Such that:

Equivalent relation: If D1 ≤ D2 & D2 ≤ D1 then D1 ≡ D2.

Strictly-weaker relation: If D1 ≤ D2 & D2 ≰ D1 then D1 < D2.

A reduction algorithm does not implement any failure detector

function because it is assumed to be asynchronous. The weaker

than relation is only valid for the assumed system model as an

algorithm is system dependent. The output of the emulated

failure detector with a distributed variable often implemented by

this algorithm.

The weakest failure detector problem: The capability to

comparing the failure detector, provides the opportunity to look

for the weakest failure detector D which can solve a given

problem P. If there is an algorithm that solves problem P using

failure detector D and ⩝D′ such that there is an algorithm that

solves P using D′ so that D≤ D′. In this concern, the weakest

failure detector Ω was proposed by (Chandra and Toueg, 1992)

for solving the problem of consensus with a majority of correct

processes. Many researchers (Aguilera, Toueg, and Deianov,

1999; Delporte-Gallet et. al., 2004; Jayanti and Toueg, 2008)

have used this weakest failure detector for solving various

problems.

E. Implementation Approaches

Failure detectors are like abstract modules or devices

therefore there is no specific implementation approach. The

implementation of a failure detector does not compete until it

meets the properties of the expected class. Failure detectors

monitor the other processes and provide their operational status.

Polling and Heartbeat are the two main approaches to

implement the monitoring in the failure detectors.

The polling approach is a query/reply based approach used to

monitor the processes (Larrea, Arévalo, and Fernández, 1999;

Larrea, Fernández, and Arévalo, 2004). In this technique, when a

process p tracks another process q, process p sends a query

message to q and wait until it gets a reply to this message from

q. p will suspect q if p does not get a reply after a given time.

In the heartbeat approach, every monitoring process p

receives periodic heartbeat messages from every monitored

process q as a notification that it is still alive. Monitoring

process p will suspect q if p does not receive a heartbeat

message from q after a given time.

By observing both the approaches, the waiting time depends

on the timing of the system model. In synchronous systems time

is bounded, and in partially synchronous systems time is

adjusted as per need.

Along with the monitoring approaches, different

communication patterns are also followed for the

implementation of failure detectors. Efficiency in

communication is an important issue, for example, an all-to-all

communication pattern has the quality of responsiveness but

inefficient in terms of communication. Similarly, a higher degree

of communication efficiency would be achieved by a linear

communication pattern.

F. Solving Consensus with Failure Detectors

(Chandra and Toueg, 1996) used the weakest class of failure

detectors ◊S to solve consensus with the majority of correct

Table I. Eight Classes of Failure Detectors

Completeness Accuracy

Strong Weak Eventual

Strong

Eventual Weak

Strong Perfect

P

Strong

 S

Eventually

Perfect ◊P

Eventually Strong

◊S

Weak
Q

Weak

 W

◊Q

Eventually Weak

◊W

Journal of Scientific Research, Volume 64, Issue 2, 2020

 255
Institute of Science, BHU Varanasi, India

processes. They developed a centralized consensus algorithm by

using ◊S failure detector and round-based (rotating coordinator)

approach. (Hurfin and Raynal, 1999) and (Schiper, 1997) also

used this approach to develop algorithms. A comparison of these

three algorithms is presented in (Guerraoui et al., 2000).

IV. EXISTING FAILURE DETECTOR ALGORITHMS

Failure detector algorithms that belong to different classes for

asynchronous, partially synchronous and synchronous systems

are discussed in the literature. These algorithms are mostly

designed for the all-to-all process communication model and can

handle the majority of failures. Polling or heartbeat approaches

are adapted to monitor the process. Failure detectors provide a

list of suspected processes or trusted processes by using these

approaches. Thus, the analysis of failure detector algorithms

depends on their class, monitoring approach, failure types, and

outcomes.

To solve the consensus problem in asynchronous systems,

unreliable failure detectors were proposed by (Chandra &

Toueg, 1996) which identifies only crash failures. The

classification of unreliable failure detectors was based on eight

classes in terms of two abstract properties: completeness and

accuracy. A suspicion based unreliable failure detector for

asynchronous systems with the majority of crash failures is

discussed in this paper.

Another type of failure detector was introduced by (Aguilera,

Chen, & Toueg, 1997) named Heartbeat failure detector which

depends on a non-suspicion based algorithm that accomplishes a

reliable communication with quiescent algorithms. It handles

crash failures as well as link failures and offers a list of

suspected processes in the matrix form representing both correct

and faulty processes as an output. The failure detector was

implemented for asynchronous systems without using the

timeout concept. Problems like a consensus, k-set agreement,

atomic broadcast, and atomic commitment can be solved with

the help of the heartbeat failure detector.

(Chandra & Toueg, 1996) proposed a failure detector

algorithm that follows an all-to-all process communication

pattern therefore several messages are exchanged periodically.

(Larrea, Fernández, & Arévalo, 2004) introduced an

advancement of this failure detector algorithm which detects

crash failures in a partially synchronous system by using the

polling concept. In this algorithm, the processes are arranged as

a logical ring, and they exchange a linear number of messages in

a periodical manner.

(Chandra and Toueg, 1992) introduced the weakest failure

detector Ω which solved consensus in an asynchronous system

with a majority of correct processes. Weak and eventually weak

failure detectors that are used to solve consensus can also solve

the atomic broadcast problem in asynchronous systems. A

modified version of this failure detector was introduced by

(Gallet et. al., 2007) which is the weakest failure detector to

solve the consensus problem in an asynchronous system model.

Failure detectors and problem specifications are two different

transformations for algorithms. This algorithm is used to solve

crash-stop and permanent omission failures by assuming that the

majority of processes are correct.

Partitioned synchronous systems are weaker than synchronous

systems. A suspicion based partially perfect failure detector for

Partitioned synchronous systems was proposed by (Macêdo &

Gorender, 2009). It uses a polling concept for monitoring the

processes. A failure detector of the Perfect P class was

developed with properties like strong partition synchrony and

timeliness oracle for this type of system.

A communication efficient failure detector of eventual Perfect

◊P class is proposed by (Soraluze et. al., 2011) that deals with

crash failures and omission failures. The heartbeat approach is

used to monitor the process failure in a partially synchronous

system which follows the all-to-all process connected network.

This algorithm follows only a linear number of links for message

transmission to achieve communication efficiency. The results

are shown in the form of a matrix with both correct and faulty

processes.

(Arevalo, Anta, Imbs, Jimenez, & Raynal, 2015) presented a

new failure detector classes HΩ and HΣ which are the

counterpart of weakest failure detector classes Ω and Σ for

homonymous distributed systems. Two trust-based failure

detector algorithms were proposed to resolve the problem of

consensus in homonymous asynchronous systems with the

assumption of the majority of correct processes. The polling

approach is used for monitoring the processes and to detect crash

failures.

Based on Chandra and Toueg (1996) unreliable failure

detector, (Larrea and Ferna´ndez, 1999) proposed a family of

distributed algorithms and implemented four unreliable failure

detectors in partially synchronous systems. It was proven that

these algorithms are efficient in comparison with the weakest

failure detector algorithm proposed by Chandra and Toueg.

In (Larrea and Ferna´ndez, 2004), the implementation of

different classes of failure detectors for partially synchronous

systems was studied. They implemented the four classes of

unreliable failure detectors with eventual accuracy (named ◊P,

◊Q, ◊S, and ◊W). These distributed algorithms arrange the

processes in a logical ring.

(Most´efaoui and Raynal, 1999) proposed a quorum-based,

generic dimensional, and simple consensus protocol. The basic

algorithmic structures and principles of the protocol permit early

decision and use messages shorter than previous solutions. This

protocol works with any failure detector belongs to the class S

(provided that f ≤ n − 1) or to the class ◊ S (provided that f <

n/2). They proved that this protocol solves the consensus

problem with the help of unreliable failure detectors when at

most f process may crash out of n processes.

Journal of Scientific Research, Volume 64, Issue 2, 2020

 256
Institute of Science, BHU Varanasi, India

The previous failure detection algorithms which are used in

asynchronous and partially synchronous systems are not working

efficiently in synchronous systems because they generate more

computation and communication overhead. (Verma, &

Pattanaik, 2016) proposed a suspicion based failure detector of

Perfect P class which has strong completeness and strong

accuracy properties. This failure detector is developed for

synchronous environments and real-time hierarchical distributed

systems (Verma, Pattanaik, & Goel, 2014; Verma, & Pattanaik,

2014; Verma, & Pattanaik, 2015a; Verma, & Pattanaik, 2015b).

This failure detector algorithm detects Crash failures, crash

recovery failures, omission failures, link failures, and timing

failures through polling-based health monitoring methodology

that reduces the number of messages flooded in the network.

Each process maintains the operational information of all child

processes so that they have a list of faulty processes. For

hierarchical distributed systems, a suspicion-based failure

detector of Strong S class proposed in (Verma, Singh, &

Pattanaik, 2019) working in time-synchronous environments.

The algorithm of Strong S class has properties like strong

completeness and weak accuracy and detects permanent crash

failures, omission failures, link failures, and timing failures.

The Modal failure detector star, denoted by M*, was proposed

by Park et. al. (2013) to solve the problem of a non-blocking

atomic commitment in a message-passing asynchronous

environment. This failure detector belongs to a new type of

failure detector class with the properties' strong completeness,

strong accuracy, and modal accuracy. This failure detector class

is weaker than Perfect P class and stronger than Eventually

Perfect ◊P class. Initially, this failure detector suspects every

process, but when it found the process is correct then it does not

suspect it again before the crash. It is effective and efficient than

the failure detector of class P.

(Xiaohui & Yan, 2014) proposed an adaptive failure detector

algorithm (A-FD) to increase the adaptive capacity of failure

detectors through which their detecting quality adjusts

dynamically according to the variations of the network. This

model implements a heartbeat detection strategy based on PULL

mode. It is proven by the experiments that this algorithm can

reduce average detection time and the effect of the network

delay to some extent. The main purpose of this algorithm is to

increase the fault tolerance capacity of a distributed system with

the help of adaptive failure detectors.

A Two-window failure detector (2W-FD) was introduced by

(Tomsic, Sens, Garcia, Arantes, & Sopena, 2015). It is an

adaptive algorithm that provides Quality of Service in terms of

speed and accuracy. Owing to its adaptive nature, it can respond

to sudden changes in network scenarios as LAN or WAN

scenarios. It uses two sliding windows of past receiving

messages, which are different in sizes and store recent heartbeat

history. The large window allows the failure detector to estimate

on a stable period or unstable periods. The small window allows

the failure detector to quickly respond to those abrupt condition

changes in the network. The large window increases the

accuracy and a small window increases the speed of failure

detector. The failure detector shows the best performance in both

stable and unstable network conditions.

An adaptive binary machine learning-based failure detector

(MLFD) was proposed by (Sozinov, & Hammar, 2017). It is

based on an online linear regression model and follows Monte

Carlo simulations of a distributed system. The network and

clock synchronization increase the difficulty of failure detection.
This model considers failure detection as a learning problem

where round trip times (RTTs) are predicted using incremental

learning on data from recorded heartbeats. It monitors every

heartbeat timeout δ and also sends a liveness request to every

process. To detect failures, it works with a sliding window of

RTTs and a machine learning model that is updated

incrementally. It is suitable for partially synchronous systems

and adaptable in various network conditions.

An Omega failure detector was proposed by (Jiménez et. al.,

2020) to solve consensus in the asynchronous system. It deals

with degenerative byzantine failure with a reliable new broadcast

primitive called RFLOB. It gives the optimal result for failure

detection because it is applied when f < n/3. It follows unknown

membership and minimum connectivity. At the initial stage,

every process does not know the identity of all the processes in

the system. The algorithm referred to as failure detector Ω

(Chandra & Toueg, 1996), with degenerative byzantine failures

and RFLOB (Reliable FIFO and Local Order Broadcast)

broadcast primitive to communicate among the processes

through messages. This RFLOB confirms guaranteed reliability

and reduces the complexity in design and understanding of the

algorithm.

We provide an analysis of various failure detectors based on

many properties. Table II shows the comprehensive analysis of

some failure detector algorithms based on their specific

properties, the capabilities to solve the type of problems,

applicabilities on system modes, and methodologies used.

CONCLUSION

In this paper, the fundamental of failure detectors is discussed

and a detailed analysis of various failure detector algorithms is

presented. Various suspicion-based and trust-based failure

detector algorithms are discussed. Some of the failure detectors

can detect only a single type failure and others can detect more

than one failure but only a few can able to solve all types of

failures. This study helps to naïve researchers to review all the

algorithms systematically.

Developing failure detectors for the systems with various

topologies (other than all-to-all connected networks) and dealing

with all types of failures with high accuracy may be a good

research direction for the researchers.

Journal of Scientific Research, Volume 64, Issue 2, 2020

 257
Institute of Science, BHU Varanasi, India

Table II. A comparative view of failure detector algorithms

Author Name of Failure

Detector (FD)

Applicable

System Mode

Problems Results Properties Methodology used

Chandra et.

al., 1992

Weakest Failure

Detector ◊W
(suspicion based)

Asynchronous

systems

Detect failure and

solve Consensus

Provides a list

of suspected

processes with

failure pattern

Weak

Completeness &

Eventually Weak

Accuracy

To solve consensus when

(n>2f), connected with a

reliable communication

channel, Reduction

algorithm.

Chandra et.

al., 1996

Unreliable failure

detectors

(suspicion based)

Asynchronous

systems

Crash failure, Solve

consensus as well as

atomic broadcast

Provides

suspected list of

processes

Abstract

properties

completeness and

accuracy,

Reliable Broadcast

communication channel,

Heartbeat monitoring

approach, Reduction

algorithm.

Aguilera et.

al., 1997

Heartbeat FD

(Non- suspicion

based)

Asynchronous

systems

Crash failures & link

failures, consensus,

k-set agreement,

atomic broadcast &

atomic commitment

problem

Matrix of

correct & faulty

processes

HB-Completeness

& HB-Accuracy

Reliable communication

with the quiescent

algorithm. Periodically

send heartbeat without

timeout

Larrea et.

al., 2004

Enhancement

algorithm for

unreliable failure

detector

(suspicion based)

Partially

synchronous

systems

Crash failures,

Consensus

Detects the

crashed

processes

Abstract

properties

completeness and

accuracy,

Uses polling concept, &

also uses a logical ring

arrangement of processes

and periodically exchanges

at a most linear number of

messages

Gallet et.

al., 2007

Omega (Ω)

failure detector

(suspicion based)

Asynchronous

systems

Consensus with

Crash-stop failures &

permanent omission

failures

Provides

suspected list of

processes

Weak

Completeness &

Eventually Weak

Accuracy

Use transformation for

algorithms, enhancement of

weakest failure detector Ω

Soraluze et.

al., 2011

Communication

efficient

eventually perfect

◊P Failure

Detector

Partially

synchronous

systems

Omission failure,

Crash failure while

receiving messages

Matrix of

correct &

faulty processes

Strong

completeness &

eventually strong

accuracy

Use the heartbeat approach

for failure monitoring, the

all-to-all process connected

network

Arevalo et.

al., 2015

Failure detector

(called HΩ, ◊HP̅

and HΣ) (Trust-

based)

Homonymous

distributed

systems

Consensus, Crash

failures

Majority of

correct

processes

Classes HΩ and

HΣ

Polling approach for failure

monitoring, and initially

unknown membership

Park et. al.,

2013

Modal failure

detector star

represented by

M* (suspicion

based)

Crash-prone

asynchronous

system

Non-blocking atomic

commitment problem

Provides the

information of

correct

processes

Strong

completeness,

strong accuracy &

modal accuracy

Heartbeat approach is used

for monitoring, assume a

majority of correct

processes

Xiaohui et.

al., 2014

Adaptive failure

detector A-FD

Distributed

system

Failure detection &

fault tolerance

Decrease

average

detection time

& impact of

network delay

Strong

completeness &

eventually strong

accuracy

Adaptive-algorithm

heartbeat detection strategy

based on PULL mode,

measure QoS of failure

detectors

Tomsic et.

al., 2015

Two-Window

failure detector

Asynchronous

Systems

Unstable network

conditions, time-

constraints problem

Fast and

accurate

information

about the faulty

processes

Provides Quality

of Service in the

form of speed and

accuracy

Uses two sliding windows

of past receiving messages,

that allows failure detector

to enhance the estimation

power as well as quick

responsiveness

Journal of Scientific Research, Volume 64, Issue 2, 2020

 258
Institute of Science, BHU Varanasi, India

Verma et.

al., 2016

Failure Detector

of Perfect P Class

(suspicion based)

Real-time

hierarchical

synchronous

distributed

systems

Crash failures, crash

recovery failures,

omission failures,

link failures, and

timing failures

Gives the

information of

all faulty

processes to the

root process

Strong

Completeness &

Strong Accuracy

Failure detector algorithm,

polling-based health

monitoring methodology is

used for the reduction of

messages in the network

Sozinov et.

al., 2017

MFLD (Machine

Learning failure

Detector)

Partially

synchronous

systems

Failure detection and

also consider

heartbeat timeouts

Record RTTs to

adapt changing

network

conditions and

record timeout

to detect

failures

accurately

Strong

Completeness &

probabilistic

eventually strong

accuracy

Based on an online linear

regression model,

Round trip time of

prediction, based on Monte

Carlo Simulations of a

distributed system,

heartbeat monitoring

approach

Jiménez et.

al., 2020

Omega Failure

Detector

Asynchronous

systems

Consensus,

degenerative

byzantine failures,

Consensus can

be solved

totally and

messages are

sent in the same

order

Failure detector

class Ω with

correctness and

accuracy

Uses minimum

connectivity, unknown

membership & RFLOB

(Reliable FIFO and Local

Order Broadcast) broadcast

communication primitive

REFERENCES

Aguilera, M. K., Chen, W., & Toueg, S. (1997, September).

Heartbeat: A timeout-free failure detector for quiescent

reliable communication. In International Workshop on

Distributed Algorithms (pp. 126-140). Springer, Berlin,

Heidelberg.

Aguilera, M. K., Chen, W., & Toueg, S. (1999). Using the

heartbeat failure detector for quiescent reliable

communication and consensus in partitionable networks.

Theoretical Computer Science, 220(1), 3-30.

Alpern, B., & Schneider, F. B. (1985). Defining liveness.

Information processing letters, 21(4), 181-185.

Alpern, B., & Schneider, F. B. (1987). Recognizing safety and

liveness. Distributed computing, 2(3), 117-126.

Arévalo, S., Anta, A. F., Imbs, D., Jiménez, E., & Raynal, M.

(2015). Failure detectors in homonymous distributed systems

 (with an application to consensus). Journal of Parallel and

Distributed Computing, 83, 83-95.

Attiya, H., & Welch, J. (2004). Distributed computing:

fundamentals, simulations, and advanced topics (Vol. 19).

John Wiley & Sons.

Barborak, M., Dahbura, A., & Malek, M. (1993). The consensus

problem in fault-tolerant computing. ACM Computing

Surveys (CSur), 25(2), 171-220.

Basu, A., Charron-Bost, B., & Toueg, S. (1996, October).

Simulating reliable links with unreliable links in the presence

of process crashes. In International Workshop on Distributed

Algorithms (pp. 105-122). Springer, Berlin, Heidelberg.

Beneson, Z., Freiling, F. C., Holz, T., Kesdogan, D., & Draque

Penso, L. (2006). Safety, liveness, and information flow:

Dependability revisited. In ARCS'06, 19th International

Conference on Architecture of Computing Systems.

Gesellschaft für Informatik eV.

Chandra, T. D., & Toueg, S. (1991, July). Unreliable failure

detectors for asynchronous systems (preliminary version). In

Proceedings of the tenth annual ACM symposium on

Principles of distributed computing (pp. 325-340).

Chandra, T. D., & Toueg, S. (1996). Unreliable failure detectors

for reliable distributed systems. Journal of the ACM

(JACM), 43(2), 225-267.

Chandra, T. D., Hadzilacos, V., & Toueg, S. (1992). The

weakest failure detector for solving consensus. Proceedings

of the11th Annual ACM Symposium on Principles of

Distributed Computing Vancouver, BC, Canada (pp. 147-

158). doi:10.1145/135419.135451

Charron-Bost, B., Toueg, S., & Basu, A. (2000, August).

Revisiting safety and liveness in the context of failures. In

International Conference on Concurrency Theory (pp. 552-

565). Springer, Berlin, Heidelberg.

Cortiñas, R., (2011, January). Failure detectors and

communication efficiency in the crash and general omission

failure models. Ph.D. thesis, University of Basque Country,

UPV/EHU.ISBN: 978-84-694-5838-9

Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005).

Distributed systems: concepts and design. pearson education.

de Araújo Macêdo, R. J., & Gorender, S. (2009, March). Perfect

failure detection in the partitioned synchronous distributed

system model. In 2009 International Conference on

Availability, Reliability and Security (pp. 273-280). IEEE.

Delporte-Gallet, C., Fauconnier, H., Freiling, F. C., Penso, L. D.,

& Tielmann, A. (2007, September). From crash-stop to

permanent omission: Automatic transformation and weakest

failure detectors. In International Symposium on Distributed

Computing (pp. 165-178). Springer, Berlin, Heidelberg.

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos,

V., Kouznetsov, P., & Toueg, S. (2004, July). The weakest

failure detectors to solve certain fundamental problems in

distributed computing. In Proceedings of the twenty-third

annual ACM symposium on Principles of distributed

computing (pp. 338-346).

Journal of Scientific Research, Volume 64, Issue 2, 2020

 259
Institute of Science, BHU Varanasi, India

Dolev, D., Dwork, C., & Stockmeyer, L. (1987). On the minimal

synchronism needed for distributed consensus. Journal of the

ACM (JACM), 34(1), 77-97.

Dwork, C., Lynch, N., & Stockmeyer, L. (1988). Consensus in

the presence of partial synchrony. Journal of the ACM

(JACM), 35(2), 288-323.

Fich, F., & Ruppert, E. (2003). Hundreds of impossibility results

for distributed computing. Distributed computing, 16(2-3),

121-163.

Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985).

Impossibility of distributed consensus with one faulty

process. Journal of the ACM (JACM), 32(2), 374-382.

Guerraoui, R., Hurfinn, M., Mostéfaoui, A., Oliveira, R., Raynal,

M., & Schiper, A. (2000). Consensus in asynchronous

distributed systems: A concise guided tour. In Advances in

Distributed Systems (pp. 33-47). Springer, Berlin,

Heidelberg.

Hadzilacos, V., & Toueg, S. (1994). A modular approach to

fault-tolerant broadcasts and related problems. Cornell

University.

Hurfin, M., & Raynal, M. (1999). A simple and fast

asynchronous consensus protocol based on a weak failure

detector. Distributed Computing, 12(4), 209-223.

Hutle, M. (2005). Failure detection in sparse networks. na.

Jayanti, P., & Toueg, S. (2008, August). Every problem has a

weakest failure detector. In Proceedings of the twenty-

seventh ACM symposium on Principles of distributed

computing (pp. 75-84).

Jiménez, E., López-Presa, J. L., & Martín-Rueda, J. (2020).

Consensus using omega in asynchronous systems with

unknown membership and degenerative Byzantine failures.

Journal of Computer and System Sciences, 107, 54-71.

Lamport, L. (1977). Proving the correctness of multiprocess

programs. IEEE transactions on software engineering, (2),

125-143.

Lamport, L. (1979). A new approach to proving the correctness

of multiprocess programs. ACM Transactions on

Programming Languages and Systems (TOPLAS), 1(1), 84-

97.

Lamport, L., & Fischer, M. (1982). Byzantine generals and

transaction commit protocols (Vol. 66). Technical Report 62,

SRI International.

Lamport, L., & Time, C. (1976). The Ordering of Events in a

Distributed System. Communications of the ACM, 21(7),

558.

Larrea, M., Arévalo, S., & Fernndez, A. (1999, September).

Efficient algorithms to implement unreliable failure detectors

in partially synchronous systems. In International

Symposium on Distributed Computing (pp. 34-49). Springer,

Berlin, Heidelberg.

Larrea, M., Fernández, A., & Arévalo, S. (2004). On the

implementation of unreliable failure detectors in partially

synchronous systems. IEEE Transactions on Computers,

53(7), 815-828.

Lynch, N. A. (1996). Distributed Algorithms, Morgan

Kaufmann Publishers. Inc, 1, 997.

Mostéfaoui, A., & Raynal, M. (1999, September). Solving

consensus using Chandra-Toueg’s unreliable failure

detectors: A general quorum-based approach. In International

Symposium on Distributed Computing (pp. 49-63). Springer,

Berlin, Heidelberg.

Neiger, G., & Toueg, S. (1993). Simulating synchronized clocks

and common knowledge in distributed systems. Journal of

the ACM (JACM), 40(2), 334-367.

Nie, C., & Leung, H. (2011). A survey of combinatorial testing.

ACM Computing Surveys (CSUR), 43(2), 1-29.

Park, S. H., Lee, J. Y., & Yu, S. C. (2013, April). Non-blocking

atomic commitment algorithm in asynchronous distributed

systems with unreliable failure detectors. In 2013 10th

International Conference on Information Technology: New

Generations (pp. 33-38). IEEE.

Pease, M., Shostak, R., & Lamport, L. (1980). Reaching

agreement in the presence of faults. Journal of the ACM

(JACM), 27(2), 228-234.

Perry, K. J., & Toueg, S. (1986). Distributed agreement in the

presence of processor and communication faults. IEEE

Transactions on Software Engineering, (3), 477-482.

Raynal, M. (2016, June). A look at basics of distributed

computing. In 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS) (pp. 1-11). IEEE.

Schiper, A. (1997). Early consensus in an asynchronous system

with a weak failure detector. Distributed Computing, 10(3),

149-157.

Schlichting, R. D., & Schneider, F. B. (1983). Fail-stop

processors: an approach to designing fault-tolerant

computing systems. ACM Transactions on Computer

Systems (TOCS), 1(3), 222-238.

Schneider, F. B. (1993). What good are models and what models

are good. Distributed systems, 2, 17-26.

Soraluze, I., Cortiñas, R., Lafuente, A., Larrea, M., & Freiling, F.

(2011). Communication-efficient failure detection and

consensus in omission environments. Information Processing

Letters, 111(6), 262-268.

Sozinov, K., & Hammar, K. (2017). Machine Learning for

Failure Detection in Distributed Systems.(Project Report)

Tomsic, A., Sens, P., Garcia, J., Arantes, L., & Sopena, J. (2015,

May). 2w-fd: A failure detector algorithm with qos. In 2015

IEEE International Parallel and Distributed Processing

Symposium (pp. 885-893). IEEE.

Turek, J., & Shasha, D. (1992). The many faces of consensus in

distributed systems. Computer, 25(6), 8-17.

Verma, A., Pattanaik, K. K., & Goel, P. P. (2014, April). Mobile

agent based CBTC system with moving block signalling for

Indian Railways. In Proceedings of the 2nd international

conference on railway technology: Research, development

and maintenance, Ajaccio, Corsica, paper (Vol. 278, pp. 8-

11).

Verma, A., & Pattanaik, K. K. (2014). Mobile agent based train

control system for mitigating meet conflict at

turnout. Procedia Computer Science, 32, 317-324.

Journal of Scientific Research, Volume 64, Issue 2, 2020

 260
Institute of Science, BHU Varanasi, India

Verma, A., & Pattanaik, K. K. (2015a). Multi-Agent

Communication Based Train Control System for Indian

Railways: The Structural Design. JSW, 10(3), 250-259.

Verma, A., & Pattanaik, K. K. (2015b). Multi-agent

communication-based train control system for Indian

railways: the behavioural analysis. Journal of Modern

Transportation, 23(4), 272-286.

Verma, A., & Pattanaik, K. K. (2016). Failure Detector of

Perfect P Class for Synchronous Hierarchical Distributed

Systems. International Journal of Distributed Systems and

Technologies (IJDST), 7(2), 57-74.

Verma, A., Singh, M., & Pattanaik, K. K. (2019). Failure

Detectors of Strong S and Perfect P Classes for Time

Synchronous Hierarchical Distributed Systems. In Applying

Integration Techniques and Methods in Distributed Systems

and Technologies (pp. 246-280). IGI Global.

Widder, J., & Schmid, U. (2009). The theta-model: achieving

synchrony without clocks. Distributed Computing, 22(1), 29-

47.

Xiaohui, W., & Yan, Z. (2014, December). Adaptive failure

detector A-FD. In 2014 IEEE 7th Joint International

Information Technology and Artificial Intelligence

Conference (pp. 455-458). IEEE.
