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Abstract: In distributed systems, failure detectors are used to 

monitor the processes and to reduce the risk of failures by detecting 

them before system crashes. Accuracy and completeness are the key 

attributes to measure the quality of failure detectors. Failure 

detectors are said to be unreliable because sometimes they suspect a 

correct process as a faulty process or they treat a faulty process as a 

correct process. In this paper various failure detector algorithms 

are discussed. A comprehensive study is presented based on 

properties, methodologies used, the applicability of systems, and 

outcomes of the failure detectors. The paper helps readers for the 

enhancement of knowledge about the basics of failure detectors and 

the different algorithms which are developed to solve the failure 

detection problems of distributed systems. 

Index Terms: Asynchronous System, Consensus, Distributed 

Systems, Failure Detectors, Failure Detector Classes. 

I. INTRODUCTION 

Reliability is a key attribute to measure the quality of any 

system. The reliability of a system depends on the less 

probability of failures. A failure detector is used to detect the 

failures in a system. In a distributed system, a failure detector is 

a module or algorithm running at every process/node to collect 

the operational states of other processes. The information 

concerning the operational status of a process given by two 

failure detectors may vary at dissimilar processes (Cortinas, 

2011). In this situation, the reliability of the failure detector is 

measured with the help of two abstract properties: completeness 

and accuracy. Completeness is classified into strong 

completeness and weak completeness, similarly, accuracy is 

classified into strong accuracy, weak accuracy which is hard to 

attain therefore it is further classified into eventual strong 

accuracy and eventual weak accuracy. The combination of these 

two abstract properties like Completeness and Accuracy form a 

class of Failure detector which is shown in Table I (Chandra & 
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Toueg, 1996). Each combination builds a different class of 

failure detectors by using two completeness and four accuracy 

properties. The conceptual view of unreliable failure detectors 

was presented in Chandra and Toueg, 1996, for the reliable 

distributed system. Sometimes, failure detectors suspect a 

correct process as a faulty process or they treat a faulty process 

as a correct process. Therefore, the failure detectors are said to 

be unreliable due to their inaccuracy in detecting faulty 

processes. 

The conceptual view of failure detectors proposed by 

Chandra and Toueg (1991) is used to solve consensus and other 

related problems like reliable broadcast and atomic broadcast in 

an asynchronous distributed system. A distributed system has a 

set of processes coordinate with each other through message 

passing. Asynchronous and failures are the fundamental issues 

of distributed computing (Raynal, 2016). 

Distributed systems are classified into two categories based 

on their topological arrangement, and process or event 

completion time. The first category consists of Fully connected 

(Mesh), Partially connected, Hierarchical (Tree), Ring, and Star 

topology-based distributed systems. The second category has 

Synchronous, Asynchronous, and Partially-synchronous 

systems, which are based on two-time attributes, the first one is 

the message transmission time, and another is the task execution 

time (Cortinas, 2011). 

The primary issue in a distributed system is coordination. As 

every component/node in the distributed system has only a 

partial view of the global state of the system. That is why all the 

processes have to agree on some value. The problem of 

consensus is found to be similar to the agreement in which all 

the participated processes propose some values then every 

(correct) process has to agree on one of the proposed values 

(Pease, Shostak, & Lamport, 1980). The problem of consensus is 

solvable in the synchronous system by considering lower and 

upper time bounds on processes’ processing speed and 

communication delays (Lynch, 1996). But, in an asynchronous 
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system, consensus cannot deterministically be solved due to the 

lack of proper time-bound on events. In an asynchronous system, 

the condition of reliable failure detection cannot be fulfilled due 

to its inefficiency to differentiate a crashed process and a slow 

process (Fischer, Lynch, & Paterson, 1985). Dolev et. al. (1987) 

examined 32 partial synchrony systems and proved that 4 

systems out of those 32 systems can solve the problem of 

consensus. Dwork et. al. (1988) assumed two partially 

synchronous systems and proved that a consensus algorithm can 

solve as long as f<n/2, where f denotes the number of faulty 

processes and n denotes the number of total processes, and also 

proposed some eventually synchronous consensus algorithms. 

 The previously defined failure detectors are based on eight 

failure detector classes and are used to solve the different types 

of agreement problems like Consensus and other related 

problems like Atomic Broadcast, k-set agreement, non-blocking 

atomic commitment, and uniform reliable broadcast, etc. The 

consensus is a model that describes a family of agreement 

problems (Pease et. al., 1980; Turek and Shasha, 1992; Barborak 

& Malek, 1993). A failure detector can detect different types of 

failures such as crash failure, crash recovery failure, omission 

failure, link failure, timing failure, and byzantine failure, and can 

work for synchronous, asynchronous, or partially synchronous 

systems. The readers can refer (Chandra and Toueg, 1992; 

Chandra and Toung, 1996; Aguilera, Chen and Toueg, 1997; 

Larrea et. al., 1999; Larrea, & Ferna´ndez, 2004; Gallet et. al., 

2007; Macêdo & Gorender, 2009; Soraluze et. al., 2011; Xiaohui 

and Yan, 2014; Verma, et. al., 2016; Sozinov & Hammar, 2017; 

Jiménez, López-Presa, & Martín-Rueda, 2020) articles to get 

more information about the various failure detectors. 

The rest of the paper is organized systematically, Section II 

describes the system model and the basic terminologies. In 

Section III, a detailed introduction of failure detectors and their 

properties with failure detector classes are presented. Section IV 

contains a detailed analysis and comparison of various types of 

failure detector algorithms. The final section presents the 

conclusion and future directions.  

II. SYSTEM MODELS 

Models are the building blocks to design and find the solution 

for a given problem. It is a representation of a problem as well as 

its solution. A good model has properties like accuracy and 

traceability, which provides easiness for validation and 

evaluation of the solution (Schneider, 1993). The components 

are modeled in the distributed systems based on their possible 

behavior. 

The components of distribute system such as state, trace and 

step are defined as follows: processes and channels are defined 

as state and work as an individual component, traces represent 

the behavior of a system which is also known as sequences of 

states, and the transition between the states is known as a step 

(Cortinas, 2011). It is very important to define the properties by 

which any implementation should efficiently satisfy its 

requirements. The properties are classified into two classes: 

safety and liveness (Lamport, 1977). The identification of 

properties of a system into these classes improves the better 

understanding of those properties, better specifications, 

subsequently possible and clear implementations, and proofs. 

The liveness property implies that the process or event will 

eventually produce a result. Similarly, the safety property 

implies that a wrong result will never be executed. According to 

the formal definitions of safety and liveness, the classification of 

the properties of a dependable system can be done into one or 

both classes (Alpern and Schneider, 1985). Many papers are 

there for more information on safety & liveness properties 

(Lamport, 1977 and 1979; Charron-Bost, Toueg, and Basu, 

2000; Alpern and Schneider, 1985 and 1987; Benenson, Freiling, 

Holz, Kesdogan, and Penso, 2006b). 

A new property is presented by (Neiger and Toueg, 1993) 

named as uniformity. It is quite interesting due to its nature. It is 

considered that a process, which holds the uniform property, is 

potentially correct because it does not fail (Hadzilacos and 

Toueg, 1994). 

A. Processes 

The process is stated as a computational entity. In the 

distributed system model, there is a set of processes ∏= {p1, p2, 

p3… pn}, where ∏, n and p denote the set of processes, number 

of processes in a set, and a process respectively. The set of 

processes is finite and constant throughout the execution of the 

system. All processes in the system are connected with the help 

of pairwise bidirectional communicational channels in a fully 

connected topology (Cortinas, 2011). 

Processes may be characterized as correct processes that never 

faced any failure and faulty processes that are affected by any 

type of failure or crash. Correct processes are represented by c 

and faulty processes are represented by f. 

Time-driven and message-driven are the two classical 

approaches of event generation. In the time-driven algorithms, 

events generation implies the passage of time and measured by 

clocks or times. In message-driven algorithms, event generation 

only depends on message response. 

B. Communication Channels/Links 

An abstraction of the network is represented by 

communication channels or links. The processes are 

communicating with each other by sending messages to their 

corresponding links. A unidirectional communication link allows 

a one-way communication but a bidirectional communication 

link allows two-way communication by providing a pair of links. 

E.g., by a unidirectional link, a process p can only send 

messages to another process q, but by a bidirectional link, both 

the processes p and q can send messages to each other. The 

omission of messages can be happened after receiving and 

before delivering. Links can be differentiated based on their 
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properties such as reliable links, unreliable links, and fair lossy 

links. 

A reliable link is also known as a perfect link with the 

properties no creation, no duplicity, and no loss, that means no 

message is created, no message is received again, and every sent 

message has to be received (Basu, Charron-Bost, and Toueg, 

1996). 

A link with the properties no creation, finite duplication, and 

fair loss or fairness, is known as fair lossy link or fair-loss link. 

No creation means that if a process q receives a message m, this 

message m was sent by another process p. Finite duplication 

states that a message m, which is sent by finite times from a 

process p to process q, is also delivered to process q by the finite 

times. Fair loss or fairness means a message m was sent from a 

process p to correct process q by infinite times, whereas the 

message m was eventually received by q from p just once. In the 

crash failure model, a problem that is solved by using reliable 

links can also be solved by using fair lossy links (Basu et. al., 

1996). 

An eventually reliable link initially losses messages but after a 

time all the messages sent from a process p via this link to 

process q are eventually received. It has properties such as no 

creation, no duplication, and finite loss. 

C. Time and timing models 

 Let us suppose, each process has a local clock which is used 

for passage measurement. In a distributed system, sometimes it 

is difficult to keep all the clocks in synchronous mode. The 

logical time concept was proposed (Lamport, 1976) that allows 

to abstract time. Every process augmented with a logical clock 

that permits the ordering of events at that process. A discrete 

global clock simply works as a functional device, events at 

processes are related to global time but processes cannot directly 

access to this clock. 

 A synchronous system is defined by (Hadzilacos & Toung, 

1994) in which every step of a process is bounded with time, 

every send message is received within a given time-bound, and 

every clock has a known bounded deviation from real-time. 

 In an asynchronous system, there is no time-bound for 

message transmission or task execution (Chandra & Toueg, 

1996). Processes transmit the messages without any time-bound 

therefore it is very difficult to decide whether the process is slow 

or crashed. 

 A partially synchronous system has features of both 

synchronous and asynchronous systems (Dolev, Dwork, and 

Stockmeyer, 1987). Initially, the partial synchronous system 

does not have any time-bound for processing messages and 

works as an asynchronous system. However, after a time it 

creates time-bounds based on the time taken by the previous 

events. This time is known as Global Stabilization Time (GST). 

After using GST, this system acts as a synchronous system 

therefore it is also known as an eventually synchronous system 

(Dwork, Lynch, & Stockmeyer, 1988). A partial synchronous 

timing model named as a theta model is proposed by (Widder 

and Schmid, 2009). This model shows that after an unidentified 

GST, the ratio between the shortest and largest time is bounded 

for message transmission. 

D. Process Failure Models 

Processes are classified into two types, correct or faulty as 

discussed above. The processes may be suffered from many 

types of failures. Crash, crash-recovery, general omission, and 

byzantine are some types of process failures found in a 

distributed system. 

Crash failures were firstly discussed in the context of 

consensus (Lamport and Fischer, 1982; Hadzilacos and Toueg, 

1994). When a process stops it’s working like execution, sending 

or receiving messages, and when it becomes inactive then it is 

called that the process is suffered from the crash failure. The 

crash is permanent therefore there is no possibility of recovery. 

This model is also known as a crash-stop or crash-prone model. 

A fail-stop crash was discussed by (Schlichting & Schneider, 

1983), it is a strong type of crash. If a process is suffered from 

this type of crash than all the correct processes are learned about 

this failure. 

The crash- recovery model is an advanced version of the crash 

failure model in which a crashed process can be recovered. 

When a recovering process behaves like a new process, it forgets 

the pre-crash information. To overcome this problem, processes 

need stable storage to store the information which is accessed 

later. 

A general omission is a type of failure, which happens at a 

process end due to loss of messages during transmission. 

Omission failures help to model communication channels that 

lose messages (Fich and Ruppert, 2003). This failure has two 

types: send-omission and receive-omission. In send-omission 

failure, a process executes the send-message instruction but the 

message is not dispatched into the channel because it is deleted 

in the out-going buffer of the process. Whereas, in receive-

omission failure, a message is received at its destination process 

but never delivered to it because it is deleted in the in-coming 

buffer of the process. A send-omission failure model is proposed 

in (Hadzilacos and Toueg, 1994) in which processes suffer from 

send-omission and do not recover. In the general omission 

failure model, processes suffer from send omission as well as 

received omission (Perry and Toueg, 1986). 

Timing failure is a type of failure which is related to 

contravention of time bounds in synchronous as well as partially 

synchronous systems (Attiya and Welch, 2004; Coulouris, 

Dollimore, and Kindberg, 2005). 

In byzantine failure, a process makes arbitrary state transitions 

and sends arbitrary messages instead of assigned messages, it 

starts deviating from the given algorithm. This type of failure is 

also called an arbitrary failure or malicious and is modeled as a 
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byzantine failure model (Lamport, Shostak, and Pease, 1982). 

III. FAILURE DETECTORS 

A failure detector is like an abstract module or device 

established at each process so that it can provide information 

related to the operational status of the other processes in the 

system. The concept of failure detector was introduced by 

(Chandra and Toueg, 1996), which is used to encapsulate timing 

assumptions when solving the problem of consensus in 

asynchronous systems and the list of suspected processes was 

given as a result. Failure detectors are said to be unreliable due 

to its wrong suspicion of processes, as they may suspect correct 

processes in place of faulty processes. Completeness and 

accuracy properties are used to measure the reliability of the 

failure detectors (Chandra and Toueg, 1996). A detailed study of 

failure detectors with crash failures is presented in (Nie et. al., 

2011). A layered structure of the process is proposed by 

(Cortinas, 2011) has four layers as shown in (Figure 1). 

Processes are provided by the transport layer with the capability 

to send and receive messages through a communication channel. 

Failure detector layer observes the processes and provides 

probably unreliable information about the faulty processes to the 

upper layer named as a consensus layer, which uses this 

information to achieve agreement among correct processes. 

After that the set of potential applications signified by the 

application layer are benefitted from the consensus service. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Layered structure of process with the failure detector 

(Cortinas, 2011) 

Failure detectors which provide a list of suspected processes 

are known as suspicion based failure detector, e.g. eventually 

perfect failure detector symbolized as ◊P. Whereas, the failure 

detectors which provide a list of non-suspected processes 

(trusted processes) are known as trust-based failure detectors, 

e.g. eventual leader failure detector symbolized as Ω (Hutle, 

2005). 

A. Formal Definitions 

Failure detectors were introduced by (Chandra and Toueg, 1996) 

for the crash failure model. The different types of failure models 

have been discussed above. Some basic terminologies related to 

failure detectors are defined as follows: 

1) Failure Patterns: Process failure happens due to crashing. 

The crash is permanent therefore crashed processes do not 

recover. A failure pattern defined as a function F: T → 2∏, 

where F(t) represents the set of processes that have been crashed 

till time t. When a process is crashed, it does not recover that is 

F(t) ⊆ F(t+1). Similarly, the set of processes is defined as ∏ = c 

+ f where ∏, c, and f denote the set of processes, set of correct 

processes, and set of faulty processes respectively.   

2) Failure Detector History: According to (Chandra and 

Toueg, 1996), failure detector history is defined as a function 

that provides the list of suspected processes, which have been 

suspected by a failure detector till a given time period. 

Mathematically, failure detector history is defined as a function 

H: ∏ × T→ R, where R=2∏ is a range, T is a time, ∏ is a set of 

processes and H is a failure detector history.  

3) Failure Detector: A failure detector D is defined as a 

function D: F→D(F), where F and D(F) denote the failure 

pattern and set of failure detector histories respectively. It maps 

the failure pattern to a set of failure detector history. The 

behavior of a failure detector for failure pattern was shown in 

each respective history. Every process in a system has its local 

failure detector module.  

B. Failure Detector Properties 

Failure detectors have two main properties: completeness and 

accuracy (Chandra and Toueg, 1996). Completeness describes 

the capability of a failure detector for detecting faulty processes, 

whereas accuracy ensures that a failure detector should not 

suspect a correct process as faulty. Both are the opposite of each 

other. It is not beneficial to use both the properties individually. 

Completeness:  

There are two types of completeness properties (Chandra and 

Toueg, 1996), which are satisfied by a failure detector D: ∀F, 

∀H ∈ D (F). These properties are described in (Verma, Singh, & 

Pattanaik, 2019) as follows: 

 Strong Completeness: Eventually every process that crashes 

is permanently suspected by every correct process. This 

means every correct process will eventually and 

permanently suspect every faulty process. 

∃t ∈ T, ∀p ∈ F, ∀q ∈ C, ∀t′ ≥ t: p ∈ H (q, t′) 

 Weak Completeness: Eventually every process that crashes 

is permanently suspected by some correct process. This 

means every faulty process will be eventually and 

permanently suspected by at least one correct process. 

∃t ∈ T, ∀p ∈ F, ∃q ∈ C, ∀t′ ≥ t: p ∈ H (q, t′) 

Accuracy: 

There are four variations of accuracy property (Chandra and 

Toueg, 1996) that a failure detector D can satisfy: ∀F, ∀H ∈ D 

(F).  
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 Strong Accuracy: No process is suspected before it crashes. 

This means, no correct process can ever be suspected.  

∀t ∈ T, ∀p, q ∈ (∏ − F (t)): p ∉ H (q, t) 

 Weak Accuracy: Some correct process is never suspected. 

This means some correct processes can be suspected. 

∃p ∈ C, ∀t ∈ T, ∀q ∈ (∏ − F (t)): p ∉ H (q, t) 

Since it was very difficult to achieve both the accuracy 

properties so that (Chandra and Toueg, 1996) proposed an 

eventual accuracy property which is further classified into two 

more properties as follows: 

 Eventual Strong Accuracy: There is a time after which 

correct processes are not suspected by any correct process. 

Means, eventually no false suspicion will be made.  

∃t ∈ T, ∀t′ ≥ t, ∀p, q ∈ (∏ − F (t)): p ∉ H (q, t′) 

 Eventual Weak Accuracy: There is a time after which some 

correct process is never suspected by any correct process. 

Means, eventually some false suspicion will not be made. 

∃t ∈ T, ∃p ∈ (∏ − F (t)), ∀t′ ≥ t, ∀q ∈ (∏− F (t)): p ∉ H (q, t′) 

C. Failure Detector Classes 

Eight classes of failure detectors are defined with the 

combination of two completeness and four accuracy properties 

as shown in Table I (Chandra and Toueg, 1996). 

Another failure detector class named “omega Ω” was 

proposed by (Chandra, Hadzilacos, and Toueg, 1996), it 

provides eventual agreement on a common and correct leader 

among all correct processes in a system. The Ω is a trust-based 

failure detector. The perfect failure detector P is said to be 

reliable because it detects only faulty processes. Whereas, the 

eventually perfect failure detector ◊P is unreliable because it 

may suspect a correct process instead of a faulty process but 

eventually it will not make any mistake.  

D. Reducibility 

The “weaker than” relation is used for the comparison of 

failure detectors. With the help of an asynchronous algorithm, 

failure detector D1 can be emulated by using another failure 

detector D2, this implies D1 is weaker than D2 i.e. D1 ≤ D2. 

Reducibility is achieved by using a reduction algorithm. The 

failure detector D2 is reducible to D1 using a reduction 

algorithm. Such that:  

Equivalent relation: If D1 ≤ D2 & D2 ≤ D1 then D1 ≡ D2.  

Strictly-weaker relation: If D1 ≤ D2 & D2 ≰ D1 then D1 < D2. 

A reduction algorithm does not implement any failure detector 

function because it is assumed to be asynchronous. The weaker 

than relation is only valid for the assumed system model as an 

algorithm is system dependent. The output of the emulated 

failure detector with a distributed variable often implemented by 

this algorithm. 

The weakest failure detector problem: The capability to 

comparing the failure detector, provides the opportunity to look 

for the weakest failure detector D which can solve a given 

problem P. If there is an algorithm that solves problem P using 

failure detector D and ⩝D′ such that there is an algorithm that 

solves P using D′ so that D≤ D′. In this concern, the weakest 

failure detector Ω was proposed by (Chandra and Toueg, 1992) 

for solving the problem of consensus with a majority of correct 

processes. Many researchers (Aguilera, Toueg, and Deianov, 

1999; Delporte-Gallet et. al., 2004; Jayanti and Toueg, 2008) 

have used this weakest failure detector for solving various 

problems. 

E. Implementation Approaches 

Failure detectors are like abstract modules or devices 

therefore there is no specific implementation approach. The 

implementation of a failure detector does not compete until it 

meets the properties of the expected class. Failure detectors 

monitor the other processes and provide their operational status. 

Polling and Heartbeat are the two main approaches to 

implement the monitoring in the failure detectors.   

The polling approach is a query/reply based approach used to 

monitor the processes (Larrea, Arévalo, and Fernández, 1999; 

Larrea, Fernández, and Arévalo, 2004). In this technique, when a 

process p tracks another process q, process p sends a query 

message to q and wait until it gets a reply to this message from 

q. p will suspect q if p does not get a reply after a given time.  

In the heartbeat approach, every monitoring process p 

receives periodic heartbeat messages from every monitored 

process q as a notification that it is still alive. Monitoring 

process p will suspect q if p does not receive a heartbeat 

message from q after a given time. 

By observing both the approaches, the waiting time depends 

on the timing of the system model. In synchronous systems time 

is bounded, and in partially synchronous systems time is 

adjusted as per need. 

Along with the monitoring approaches, different 

communication patterns are also followed for the 

implementation of failure detectors. Efficiency in 

communication is an important issue, for example, an all-to-all 

communication pattern has the quality of responsiveness but 

inefficient in terms of communication. Similarly, a higher degree 

of communication efficiency would be achieved by a linear 

communication pattern. 

F. Solving Consensus with Failure Detectors 

(Chandra and Toueg, 1996) used the weakest class of failure 

detectors ◊S to solve consensus with the majority of correct 

Table I. Eight Classes of Failure Detectors 

Completeness Accuracy 

Strong Weak Eventual 

Strong 

Eventual Weak 

Strong Perfect 

P 

Strong 

  S 

Eventually 

Perfect ◊P 

Eventually Strong 

◊S 

Weak  
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Weak 

 W 

 
◊Q 

Eventually Weak 

◊W 

 

 



Journal of Scientific Research, Volume 64, Issue 2, 2020 

   255 
Institute of Science, BHU Varanasi, India 

processes. They developed a centralized consensus algorithm by 

using ◊S failure detector and round-based (rotating coordinator) 

approach. (Hurfin and Raynal, 1999) and (Schiper, 1997) also 

used this approach to develop algorithms. A comparison of these 

three algorithms is presented in (Guerraoui et al., 2000). 

IV. EXISTING FAILURE DETECTOR ALGORITHMS 

Failure detector algorithms that belong to different classes for 

asynchronous, partially synchronous and synchronous systems 

are discussed in the literature. These algorithms are mostly 

designed for the all-to-all process communication model and can 

handle the majority of failures. Polling or heartbeat approaches 

are adapted to monitor the process. Failure detectors provide a 

list of suspected processes or trusted processes by using these 

approaches. Thus, the analysis of failure detector algorithms 

depends on their class, monitoring approach, failure types, and 

outcomes. 

To solve the consensus problem in asynchronous systems, 

unreliable failure detectors were proposed by (Chandra & 

Toueg, 1996) which identifies only crash failures. The 

classification of unreliable failure detectors was based on eight 

classes in terms of two abstract properties: completeness and 

accuracy. A suspicion based unreliable failure detector for 

asynchronous systems with the majority of crash failures is 

discussed in this paper. 

Another type of failure detector was introduced by (Aguilera, 

Chen, & Toueg, 1997) named Heartbeat failure detector which 

depends on a non-suspicion based algorithm that accomplishes a 

reliable communication with quiescent algorithms. It handles 

crash failures as well as link failures and offers a list of 

suspected processes in the matrix form representing both correct 

and faulty processes as an output. The failure detector was 

implemented for asynchronous systems without using the 

timeout concept. Problems like a consensus, k-set agreement, 

atomic broadcast, and atomic commitment can be solved with 

the help of the heartbeat failure detector.  

(Chandra & Toueg, 1996) proposed a failure detector 

algorithm that follows an all-to-all process communication 

pattern therefore several messages are exchanged periodically. 

(Larrea, Fernández, & Arévalo, 2004) introduced an 

advancement of this failure detector algorithm which detects 

crash failures in a partially synchronous system by using the 

polling concept. In this algorithm, the processes are arranged as 

a logical ring, and they exchange a linear number of messages in 

a periodical manner. 

(Chandra and Toueg, 1992) introduced the weakest failure 

detector Ω which solved consensus in an asynchronous system 

with a majority of correct processes. Weak and eventually weak 

failure detectors that are used to solve consensus can also solve 

the atomic broadcast problem in asynchronous systems. A 

modified version of this failure detector was introduced by 

(Gallet et. al., 2007) which is the weakest failure detector to 

solve the consensus problem in an asynchronous system model. 

Failure detectors and problem specifications are two different 

transformations for algorithms. This algorithm is used to solve 

crash-stop and permanent omission failures by assuming that the 

majority of processes are correct. 

Partitioned synchronous systems are weaker than synchronous 

systems. A suspicion based partially perfect failure detector for 

Partitioned synchronous systems was proposed by (Macêdo & 

Gorender, 2009). It uses a polling concept for monitoring the 

processes. A failure detector of the Perfect P class was 

developed with properties like strong partition synchrony and 

timeliness oracle for this type of system. 

A communication efficient failure detector of eventual Perfect 

◊P class is proposed by (Soraluze et. al., 2011) that deals with 

crash failures and omission failures. The heartbeat approach is 

used to monitor the process failure in a partially synchronous 

system which follows the all-to-all process connected network. 

This algorithm follows only a linear number of links for message 

transmission to achieve communication efficiency. The results 

are shown in the form of a matrix with both correct and faulty 

processes.  

(Arevalo, Anta, Imbs, Jimenez, & Raynal, 2015) presented a 

new failure detector classes HΩ and HΣ which are the 

counterpart of weakest failure detector classes Ω and Σ for 

homonymous distributed systems. Two trust-based failure 

detector algorithms were proposed to resolve the problem of 

consensus in homonymous asynchronous systems with the 

assumption of the majority of correct processes. The polling 

approach is used for monitoring the processes and to detect crash 

failures. 

Based on Chandra and Toueg (1996) unreliable failure 

detector, (Larrea and Ferna´ndez, 1999) proposed a family of 

distributed algorithms and implemented four unreliable failure 

detectors in partially synchronous systems. It was proven that 

these algorithms are efficient in comparison with the weakest 

failure detector algorithm proposed by Chandra and Toueg. 

In (Larrea and Ferna´ndez, 2004), the implementation of 

different classes of failure detectors for partially synchronous 

systems was studied. They implemented the four classes of 

unreliable failure detectors with eventual accuracy (named ◊P, 

◊Q, ◊S, and ◊W). These distributed algorithms arrange the 

processes in a logical ring. 

(Most´efaoui and Raynal, 1999) proposed a quorum-based, 

generic dimensional, and simple consensus protocol. The basic 

algorithmic structures and principles of the protocol permit early 

decision and use messages shorter than previous solutions. This 

protocol works with any failure detector belongs to the class S 

(provided that f ≤ n − 1) or to the class ◊ S (provided that f < 

n/2). They proved that this protocol solves the consensus 

problem with the help of unreliable failure detectors when at 

most f process may crash out of n processes.  
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The previous failure detection algorithms which are used in 

asynchronous and partially synchronous systems are not working 

efficiently in synchronous systems because they generate more 

computation and communication overhead. (Verma, & 

Pattanaik, 2016) proposed a suspicion based failure detector of 

Perfect P class which has strong completeness and strong 

accuracy properties. This failure detector is developed for 

synchronous environments and real-time hierarchical distributed 

systems (Verma, Pattanaik, & Goel, 2014; Verma, & Pattanaik, 

2014; Verma, & Pattanaik, 2015a; Verma, & Pattanaik, 2015b). 

This failure detector algorithm detects Crash failures, crash 

recovery failures, omission failures, link failures, and timing 

failures through polling-based health monitoring methodology 

that reduces the number of messages flooded in the network. 

Each process maintains the operational information of all child 

processes so that they have a list of faulty processes. For 

hierarchical distributed systems, a suspicion-based failure 

detector of Strong S class proposed in (Verma, Singh, & 

Pattanaik, 2019) working in time-synchronous environments. 

The algorithm of Strong S class has properties like strong 

completeness and weak accuracy and detects permanent crash 

failures, omission failures, link failures, and timing failures.   

The Modal failure detector star, denoted by M*, was proposed 

by Park et. al. (2013) to solve the problem of a non-blocking 

atomic commitment in a message-passing asynchronous 

environment. This failure detector belongs to a new type of 

failure detector class with the properties' strong completeness, 

strong accuracy, and modal accuracy. This failure detector class 

is weaker than Perfect P class and stronger than Eventually 

Perfect ◊P class. Initially, this failure detector suspects every 

process, but when it found the process is correct then it does not 

suspect it again before the crash. It is effective and efficient than 

the failure detector of class P. 

(Xiaohui & Yan, 2014) proposed an adaptive failure detector 

algorithm (A-FD) to increase the adaptive capacity of failure 

detectors through which their detecting quality adjusts 

dynamically according to the variations of the network. This 

model implements a heartbeat detection strategy based on PULL 

mode. It is proven by the experiments that this algorithm can 

reduce average detection time and the effect of the network 

delay to some extent. The main purpose of this algorithm is to 

increase the fault tolerance capacity of a distributed system with 

the help of adaptive failure detectors. 

A Two-window failure detector (2W-FD) was introduced by 

(Tomsic, Sens, Garcia, Arantes, & Sopena, 2015). It is an 

adaptive algorithm that provides Quality of Service in terms of 

speed and accuracy. Owing to its adaptive nature, it can respond 

to sudden changes in network scenarios as LAN or WAN 

scenarios. It uses two sliding windows of past receiving 

messages, which are different in sizes and store recent heartbeat 

history. The large window allows the failure detector to estimate 

on a stable period or unstable periods. The small window allows 

the failure detector to quickly respond to those abrupt condition 

changes in the network. The large window increases the 

accuracy and a small window increases the speed of failure 

detector. The failure detector shows the best performance in both 

stable and unstable network conditions.   

An adaptive binary machine learning-based failure detector 

(MLFD) was proposed by (Sozinov, & Hammar, 2017). It is 

based on an online linear regression model and follows Monte 

Carlo simulations of a distributed system. The network and 

clock synchronization increase the difficulty of failure detection. 
This model considers failure detection as a learning problem 

where round trip times (RTTs) are predicted using incremental 

learning on data from recorded heartbeats. It monitors every 

heartbeat timeout δ and also sends a liveness request to every 

process. To detect failures, it works with a sliding window of 

RTTs and a machine learning model that is updated 

incrementally. It is suitable for partially synchronous systems 

and adaptable in various network conditions.  

An Omega failure detector was proposed by (Jiménez et. al., 

2020) to solve consensus in the asynchronous system. It deals 

with degenerative byzantine failure with a reliable new broadcast 

primitive called RFLOB. It gives the optimal result for failure 

detection because it is applied when f < n/3. It follows unknown 

membership and minimum connectivity. At the initial stage, 

every process does not know the identity of all the processes in 

the system. The algorithm referred to as failure detector Ω 

(Chandra & Toueg, 1996), with degenerative byzantine failures 

and RFLOB (Reliable FIFO and Local Order Broadcast) 

broadcast primitive to communicate among the processes 

through messages. This RFLOB confirms guaranteed reliability 

and reduces the complexity in design and understanding of the 

algorithm. 

We provide an analysis of various failure detectors based on 

many properties. Table II shows the comprehensive analysis of 

some failure detector algorithms based on their specific 

properties, the capabilities to solve the type of problems, 

applicabilities on system modes, and methodologies used. 

CONCLUSION 

In this paper, the fundamental of failure detectors is discussed 

and a detailed analysis of various failure detector algorithms is 

presented. Various suspicion-based and trust-based failure 

detector algorithms are discussed. Some of the failure detectors 

can detect only a single type failure and others can detect more 

than one failure but only a few can able to solve all types of 

failures. This study helps to naïve researchers to review all the 

algorithms systematically.  

Developing failure detectors for the systems with various 

topologies (other than all-to-all connected networks) and dealing 

with all types of failures with high accuracy may be a good 

research direction for the researchers.  
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Table II. A comparative view of failure detector algorithms 

Author Name of Failure 

Detector (FD) 

Applicable 

System Mode 

Problems Results Properties Methodology used 

Chandra et. 

al., 1992 

Weakest Failure 

Detector ◊W 
(suspicion based) 

Asynchronous 

systems 

Detect failure and 

solve Consensus 

 

Provides a list 

of suspected 

processes with 

failure pattern 

Weak 

Completeness & 

Eventually Weak 

Accuracy 

To solve consensus when 

(n>2f), connected with a 

reliable communication 

channel, Reduction 

algorithm. 

Chandra et. 

al., 1996 

Unreliable failure 

detectors 

(suspicion based) 

Asynchronous 

systems 

Crash failure, Solve 

consensus as well as 

atomic broadcast 

Provides 

suspected list of 

processes 

Abstract 

properties 

completeness and 

accuracy, 

Reliable Broadcast 

communication channel, 

Heartbeat monitoring 

approach, Reduction 

algorithm. 

Aguilera et. 

al., 1997 

Heartbeat FD 

(Non- suspicion 

based) 

Asynchronous 

systems 

Crash failures & link 

failures, consensus, 

k-set agreement, 

atomic broadcast & 

atomic commitment 

problem 

Matrix of 

correct & faulty 

processes 

HB-Completeness 

& HB-Accuracy 

Reliable communication 

with the quiescent 

algorithm. Periodically 

send heartbeat without 

timeout 

Larrea et. 

al., 2004 

Enhancement 

algorithm for 

unreliable failure 

detector 

(suspicion based) 

Partially 

synchronous 

systems 

Crash failures, 

Consensus 

Detects the 

crashed 

processes 

Abstract 

properties 

completeness and 

accuracy, 

Uses polling concept, & 

also uses a logical ring 

arrangement of processes 

and periodically exchanges 

at a most linear number of 

messages 

Gallet et. 

al., 2007 

Omega (Ω) 

failure detector 

(suspicion based) 

Asynchronous 

systems 

Consensus with 

Crash-stop failures & 

permanent omission 

failures 

Provides 

suspected list of 

processes 

Weak 

Completeness & 

Eventually Weak 

Accuracy 

Use transformation for 

algorithms, enhancement of 

weakest failure detector Ω 

Soraluze et. 

al., 2011 

Communication 

efficient 

eventually perfect 

◊P Failure 

Detector 

Partially 

synchronous 

systems 

Omission failure, 

Crash failure while 

receiving messages 

Matrix of 

correct  & 

faulty processes 

Strong 

completeness & 

eventually strong 

accuracy 

Use the heartbeat approach 

for failure monitoring, the 

all-to-all process connected 

network 

Arevalo et. 

al., 2015 

Failure detector 

(called HΩ, ◊HP̅ 

and HΣ) (Trust-

based) 

Homonymous 

distributed 

systems 

Consensus, Crash 

failures 

Majority of 

correct 

processes 

Classes HΩ and 

HΣ 

Polling approach for failure 

monitoring, and initially 

unknown membership 

Park et. al., 

2013 

Modal failure 

detector star 

represented by  

M* (suspicion 

based) 

Crash-prone 

asynchronous 

system 

Non-blocking atomic 

commitment problem 

Provides the 

information of 

correct 

processes 

Strong 

completeness, 

strong accuracy & 

modal accuracy 

Heartbeat approach is used 

for monitoring, assume a 

majority of correct 

processes 

Xiaohui et. 

al., 2014 

Adaptive failure 

detector A-FD 

Distributed 

system 

 

Failure detection & 

fault tolerance 

Decrease 

average 

detection time 

& impact of 

network delay 

Strong 

completeness & 

eventually strong 

accuracy 

Adaptive-algorithm 

heartbeat detection strategy 

based on PULL mode, 

measure QoS of failure 

detectors 

Tomsic et. 

al., 2015 

Two-Window 

failure detector 

Asynchronous 

Systems 

Unstable network 

conditions, time-

constraints problem 

Fast and 

accurate 

information 

about the faulty 

processes 

Provides Quality 

of Service in the 

form of speed and 

accuracy 

Uses two sliding windows 

of past receiving messages, 

that allows failure detector 

to enhance the estimation 

power as well as quick 

responsiveness 
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Verma et. 

al., 2016 

Failure Detector 

of Perfect P Class 

(suspicion based) 

Real-time 

hierarchical 

synchronous 

distributed 

systems 

Crash failures, crash 

recovery failures, 

omission failures, 

link failures, and 

timing failures 

Gives the 

information of 

all faulty 

processes to the 

root process 

Strong 

Completeness & 

Strong Accuracy 

Failure detector algorithm, 

polling-based health 

monitoring methodology is 

used for the reduction of 

messages in the network 

Sozinov et. 

al., 2017 

MFLD (Machine 

Learning failure 

Detector) 

Partially 

synchronous 

systems 

Failure detection and 

also consider 

heartbeat timeouts 

Record RTTs to 

adapt  changing 

network 

conditions and 

record timeout 

to detect 

failures 

accurately 

Strong 

Completeness & 

probabilistic 

eventually strong 

accuracy 

Based on an online linear 

regression model, 

Round trip time of 

prediction, based on Monte 

Carlo Simulations of a 

distributed system, 

heartbeat monitoring 

approach 

Jiménez et. 

al., 2020 

Omega Failure 

Detector 

Asynchronous 

systems 

Consensus, 

degenerative 

byzantine failures, 

Consensus can 

be solved 

totally and 

messages are 

sent in the same 

order  

Failure detector 

class Ω  with 

correctness and 

accuracy 

Uses minimum 

connectivity, unknown 

membership & RFLOB 

(Reliable FIFO and Local 

Order Broadcast) broadcast 

communication primitive 
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