

Volume 64, Issue 2, 2020

Journal of Scientific Research

Institute of Science,

Banaras Hindu University, Varanasi, India.

 282 DOI: 10.37398/JSR.2020.640239

Abstract: In object oriented software, design pattern gives the

particular solution for common design problems. In software

engineering it’s very difficult task to find out design information

due to improper documentation of software systems. It is very

much necessary to recover pattern instances so that system would

be understandable and can do modifications in them. Actually

recovery of design patterns play a significant role in object oriented

programming for software developers and researchers during

development of system software and their maintenance. Hence

mining of design patterns are very important. The paper describes

detection of design patterns from software or system design by

using the String Encoding Format in which pattern and system

graphs are transformed in string after that process of matching is

performed to extract instances from software systems. Here we

match string of system design graph and design pattern graph

using structural analysis.

Index Terms: UML, String Encoding Format, Relationships,

Design Patterns, Reliability.

I. INTRODUCTION

Design patterns solve common issues of frequent design

problems (Gamma 1995). The expert of software systems and

researchers reuse the design which play significant role in

software industry and reduce the effort and time of software

developers. Since requirements of software systems are always

changing, there is a need of modification (maintenance) in the

software.

To develop and maintain reliable software, one of the

requirements is to have a complete idea of design patterns

existing in the source code. Sometimes information of used

design patterns can give the idea about whole software

documentation. Thus with the help of design pattern mining

* Corresponding Author

reliability of software can be maintained during its modification.

If design-patterns could be captured and reused it gives an idea

to the developers and maintainers of software which is very

useful. In recent years design pattern attract researchers towards

mining of design patterns as design patterns encapsulate

valuable knowledge and information about system design.

Mining of design patterns play an important role in re-

engineering process, during program and system understanding,

during maintenance of software systems.

Here relationship graph of system design or software and

design patterns which has directed relationship. Firstly, String

Encoding Format (Zaki 2005) is written for both the directed

graphs. Here we find out whether design pattern exists in system

design string or not. The graph representation of UML diagram

is shown in section 2. The String Encoding Format of

relationship graphs is described in section 3. Design pattern

detection is described in section 4. Related works are described

in section 5 and finally we conclude in section 6.

II. GRAPH REPRESENTATION

For any software system its UML diagram, particularly class

diagram is available with this design document. In this technique

we use the UML diagram to represent both design patterns (DP)

as well as system design (SD). After that these diagrams are

converted into corresponding graphs. The UML diagram of SD

and DP is taken first and extract the relationship directed graphs

corresponding to both SD and DP to match the string. Here we

are taking SD and their corresponding relationship graphs which

have been shown in figure 1, 2, 3 and 4.

Mining Design Patterns using String Encoding

Format
Jyoti Singh1, Sripriya Roy Chowdhuri1, Bethany Gosala1, Akshara Pande2, and Manjari Gupta*1

1DST- CIMS, Institute of Science, Banaras Hindu University, Varanasi, India.

jyotisingh4337@gmail.com, sripriyaroychowdhuri@gmail.com, bethany.beta777@gmail.com, manjari@bhu.ac.in*
2School of Computing, Graphic Era Hill University, Dehradun, India. pandeakshara@gmail.com

mailto:bethany.beta777@gmail.com

Journal of Scientific Research, Volume 64, Issue 2, 2020

 283
Institute of Science, BHU Varanasi, India

Figure 1. UML Diagram: System design

Figure 2. Direct association relationship graph: System design.

Figure 3. Generalization relationship graph: System design.

Figure 4. Dependency relationship graph: System design.

In similar way, relationship graphs for DP can be extracted.

We are considering two design patterns, i.e. façade design

pattern and factory method design pattern, and their

corresponding relationships, shown in figure 5 -figure 9.

Figure 5. UML diagram: Façade design pattern.

Figure 6. Direct association relationship graph: Façade design

pattern.

Figure 7. UML diagram: Factory method design pattern.

Figure 8. Generalization relationship graph: Factory method

design pattern.

Facade

Subsystem Classes

Product

ConcreteProduct

Creator

+FactoryMethod()

ConcreteCreator

Journal of Scientific Research, Volume 64, Issue 2, 2020

 284
Institute of Science, BHU Varanasi, India

Figure 9. Dependency relationship graph: Factory method design

pattern.

III. METHODOLOGY

Here we show the String encoding method for a directed

graph: Let us consider the directed graph shown in figure-10.

Here we extended the Regular Continuous Directed Graph (zaki

2005), Sreenivasa and Ananthanarayana(2006) with some

modifications.

Figure 10. Directed graph.

Here in the figure-10 (i) 1 2 3 4-2 5-1 6 7 show the form of

encoded string. After reaching on node-7 there is no node to visit

again. In figure-10 (ii) three dummy edges are introduces (ie. 7-

>4, 7->5, 5->7). Now suppose we want to write String Encoding

Format for this, then the String Encoding Format would be: 1 2 3

4-2 5-1 6 7 0-5 0-7 0-4. Here ‘0’ is used to show the dummy

edge and ‘-’ is used to show that the is revisited again. Now the

same strategy is used to write the String Encoding Format for the

relationship directed graphs of SD and DP.

IV. STRING ENCODING FORMAT FOR DESIGN PATTERNS

Here first we consider about Façade design-pattern

(represented by figure 5), where one relationship is found which

is direct association (figure 6). String Encoding Format for this

is a b. Similarly for factory method design pattern, the String

Encoding Format for dependency relationship is s q. But for

generalization there are two occurrences of the same

relationship. Now reachable path has to be found which covers

the entire node at least once by introducing dummy edges as

shown in figure 11. Then the corresponding String Encoding

Format is q p 0 r 0 s 0 -q 0 –s –r.

Figure 11. Generalization relationship graph of factory method

design pattern including dummy edges.

V. STRING ENCODING FORMAT FOR SYSTEM DESIGN

SD has three relationship graphs, as shown in figure 2, 3 and

4. For direct association relationship the String Encoding

Formats are A B, D A, D B (here we have not introducing any

dummy vertices because only two of design patterns have been

considered, in which only one design pattern i.e., Façade design-

pattern has String Encoding Format of length two). For

generalization relationship the String Encoding Format is C B 0

E 0 F 0–C 0–F–E (the procedure is the same as for figure 11).

For dependency relationship, String Encoding Format is D C and

F C.

VI. DETECTION ALGORITHM

In this section detection algorithm is described in detail.

Matching Algorithm:

Input: UML diagrams of SD and DP.

Output: 1 if design pattern exists for a relationship

Extract Relationship graphs (Gis) form UML of SD and DP.

Introduced dummy edge in Gis if there are two edges eij and ekl

where i, j, k, l are all distinct nodes.

Write string encoding format for the Gis exist in design

patterns.

For each relationships exist in design-pattern

 Find out the string length (say n).

 Write string encoding format (for length n) for the same

relationship in system design.

 Compare the strings of design pattern and system design.

If strings are equal then design pattern exists return 1

End for

End Algorithm Matching

Now consider the String Encoding Format corresponding to

DP and SD. Suppose we want to find out Facade design-pattern

in system design, the String Encoding Format for Façade design-

pattern is a b which is the same as of system design i.e., A B, D

A, D B. This shows the occurrence of Façade design-pattern in

system design. Similarly, for factory method design pattern for

each relationship of design pattern the String Encoding Format

Journal of Scientific Research, Volume 64, Issue 2, 2020

 285
Institute of Science, BHU Varanasi, India

of system design is the same. Hence instances of factory method

exist in system design. Here Façade and factory method design

patterns exists completely in system design. By applying above

discussed algorithm we found 1 for each relationship, so there is

complete match. There are three cases found during detection of

patterns in system design in first case all the relationships of

patterns are matched with SD which is mentioned earlier known

as complete match. Another possibility is that only few

relationships of patterns are found in system design in that case

we found output 1 for some of the relationships; it is called

partial detection of design pattern in the last case there are

chances that no relationship of patterns are matched with any

relationships of SD, means no match. In this case we never

found output 1 for any of the relationships.

VII. RELATED WORK

 Mining of design patterns are very popular among the

researchers and software developers. Mining of design patterns

are based on static and dynamic analysis of design patterns.

Structural or behavioural properties of design patterns. Structural

approaches recognize the structural aspects of patterns such as

class names their relationships such as association

generalization, realization, dependency, methods and attributes

of classes. Behavioural techniques are based on procedure of

programs such as which class calls other classes.

They play significant role in comparing the patterns which

are identical. But sometimes structural and behavioural

approaches are unable to detect those patterns which are

structurally identical like state and strategy. Semantic analysis

approaches are used to detect for this type of design patterns.

There are some technique which are used to distinguished

similar structure design patterns.

Brown (1996) first gives the idea of automatic detection of

design patterns where Small-talk code was reverse-engineered

for mining of design patterns. Several researchers classified

design patterns into different mining techniques to detect design

patterns such as graph based approach, quantitative approach,

metric based approach, machine learning based approach,

constraint satisfaction approaches, formal approaches etc.

Quantitative approaches techniques are based on metrics

which calculate different type of metrics such as generalization,

aggregations, association, etc. and use various methodology to

compare and match the metric value. These techniques are very

efficient because of filtration phase. The limitation of this

technique is that behavioural characteristics of design patterns

are not considered and have another limitations such as low

precision, low recall and lack of interactivity. A metric based

approach developed by Issaoui et al. (2015) semantic and

structural analysis. Metric based approach are efficient as it

reduces search space.

Tsantalis et al. (2006), proposed a detection approach

similarity scoring in which graph are used to represent the

structure of patterns and software systems. The detection process

include calculation of similarity score of matrix of design pattern

and software. The main drawback of this algorithm is that it only

calculates the similarity of vertices, not the similarity of graphs.

Dong et al. (2008) gave an approach template matching, which

solve the limitation of similarity scoring approach. A technique

given by Antoniol et al. (2001) recognize structural patterns and

specify the usefulness of mining tool to understand the software

system.

Wenzel and Kelter (2006) proposed very popular approach

called difference calculation method, the advantage of this

methodolgy over other technique is that it can also find out

those instances of patterns which are not complete.

Several techniques are used in our earlier work Pande et al.

(2010a, b, c, d, e)), to find the instances of patterns. Singh and

Gupta (2019) introduced another tool for mining of design

patterns using subgraph matching with branch and bound

techniques.

Some researchers detect number of design pattern by using

database queries to extract information of design patterns. In

query based approach SQL queries are used to extract

information of design paterns using intermediate data

representation. Rasool et al. (2010) presented a query based

approach to extract instances of design patterns which is based

on regular expression and annotation.
Some researchers also work on constraint programming for

mining in which the problem of pattern detection is translated to

solve the problem after that design instances are described as

constraint system.

Gueheneuc et al. (2010) proposed an approach that is based

on constraint programming and machine learning, the main

objective of their research is to use machine learning technique

to improve the performance of detection tool and to reduce

search space.These approaches ensure high recall.

Guéhéneuc and Antoniol (2008) propose a tool DeMIMA

which is based on multilayer approach for design pattern

detection. This is semiautomatic approach which is based on

static as well as dynamic analysis.

Mayvan and Rasoolzadegan (2017) proposed an approach

that uses Prolog and First Order Predicate Logic (FOPL)

languages.

Mhawish and Gupta (2019) uses software metrics and

machine learning algorithm to distinguish those design patterns

which has similar structure.

Yarahamdi et al. (2020) presented a systematic review on

design pattern detection which covers various aspect of detection,

design pattern detection approaches, tool, dataset used for

evaluation, data representation and many more which are useful

for software developers or researchers.

Journal of Scientific Research, Volume 64, Issue 2, 2020

 286
Institute of Science, BHU Varanasi, India

CONCLUSIONS

In this paper we have introduced a matching algorithm based

on String Encoding Format to find the existence of patterns. We

first convert relationship directed graphs corresponding to

system design and design patterns into String Encoding Format.

The length of string Encoding Format should be the same for

both the system design and design patterns. After applying

algorithm discussed in section 4, we can have the idea of all the

design patterns occurrences. Thus this algorithm can always be

used to improve the reliability of software. In future we are

focusing on implementation of this algorithm so that

performance of this algorithm can be compared with other

existing design pattern mining tool.

REFERENCES

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y. G., & Jussien, N.

(2001, November). Instantiating and detecting design

patterns: Putting bits and pieces together. In Proceedings

16th Annual International Conference on Automated

Software Engineering (ASE 2001) (pp. 166-173). IEEE.

Alnusair, A., Zhao, T., & Yan, G. (2014). Rule-based detection

of design patterns in program code. International Journal on

Software Tools for Technology Transfer, 16(3), 315-334.

Antoniol, G., Casazza, G., Di Penta, M., & Fiutem, R. (2001).

Object-oriented design patterns recovery. Journal of Systems

and Software, 59(2), 181-196.

Brown, K. (1996). Design reverse-engineering and automated

design-pattern detection in Smalltalk. North Carolina State

University. Dept. of Computer Science.

Dong, J., Sun, Y., & Zhao, Y. (2008, March). Design pattern

detection by template matching. In Proceedings of the 2008

ACM symposium on Applied computing (pp. 765-769).

Gamma, E. (1995). Design patterns: elements of reusable

object-oriented software. Pearson Education India.

Guéhéneuc, Y. G., Guyomarc’h, J. Y., & Sahraoui, H. (2010).

Improving design-pattern identification: a new approach and

an exploratory study. Software Quality Journal, 18(1), 145-

174.

Guéhéneuc, Y. G., & Antoniol, G. (2008). Demima: A

multilayered approach for design pattern identification. IEEE

transactions on software engineering, 34(5), 667-684.

Gupta, M., Rao, R. S., Pande, A., & Tripathi, A. K. (2011,

January). Design pattern mining using state space

representation of graph matching. In International

Conference on Computer Science and Information

Technology (pp. 318-328). Springer, Berlin, Heidelberg.

Issaoui, I., Bouassida, N., & Ben-Abdallah, H. (2015). Using

metric-based filtering to improve design pattern detection

approaches. Innovations in Systems and Software

Engineering, 11(1), 39-53.

Mayvan, B. B., Rasoolzadegan, A., & Yazdi, Z. G. (2017). The

state of the art on design patterns: A systematic mapping of

the literature. Journal of Systems and Software, 125, 93-118.

Mayvan, B. B., & Rasoolzadegan, A. (2017). Design pattern

detection based on the graph theory. Knowledge-Based

Systems, 120, 211-225.

Mhawish, M. Y., & Gupta, M. (2019). Generating Code-Smell

Prediction Rules Using Decision Tree Algorithm and

Software Metrics.

Pande, A., & Gupta, M. (2010a). Design pattern detection using

graph matching. International Journal of Computer

Engineering and Information Technology (IJCEIT), 15(20),

59-64.

Pande, A., Gupta, M., & Tripathi, A. K. (2010b). Design pattern

mining for GIS application using graph matching techniques.

In 2010 3rd International Conference on Computer Science

and Information Technology (Vol. 3, pp. 477-482). IEEE.

Pande, A., Gupta, M., & Tripathi, A. K. (2010c). A new

approach for detecting design patterns by graph

decomposition and graph isomorphism. In International

Conference on Contemporary Computing (pp. 108-119).

Springer, Berlin, Heidelberg.

Pande, A., Gupta, M., & Tripathi, A. K. (2010d). A decision tree

approach for design patterns detection by subgraph

isomorphism. In International Conference on Advances in

Information and Communication Technologies (pp. 561-

564). Springer, Berlin, Heidelberg.

Pande, A., Gupta, M., & Tripathi, A. K. (2010e). DNIT—A new

approach for design pattern detection. In 2010 International

Conference on Computer and Communication Technology

(ICCCT) (pp. 545-550). IEEE.

Rasool, G., Philippow, I., & Mäder, P. (2010). Design pattern

recovery based on annotations. Advances in Engineering

Software, 41(4), 519-526.

Rasool, G., & Mäder, P. (2011, November). Flexible design

pattern detection based on feature types. In 2011 26th

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011) (pp. 243-252). IEEE.

Singh, J., & Gupta, M. (2019, May) Design Pattern Detection

Using Dpdetect Algorithm. International Journal of

Innovative Technology and Exploring Engineering.

Sreenivasa, G. J., & Ananthanarayana, V. S. (2006, December).

Efficient mining of frequent rooted continuous directed

subgraphs. In 2006 International Conference on Advanced

Computing and Communications (pp. 553-558). IEEE.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., & Halkidis,

S. T. (2006). Design pattern detection using similarity

scoring. IEEE transactions on software engineering, 32(11),

896-909.

Vokác, M. (2006). An efficient tool for recovering Design

Patterns from C++ Code. J. Object Technol., 5(1), 139-157.

Wenzel, S., & Kelter, U. (2006, October). Model-driven design

pattern detection using difference calculation. In Workshop

on Pattern Detection for Reverse Engineering.

Yarahmadi, H., & Hasheminejad, S. M. H. (2020). Design

pattern detection approaches: a systematic review of the

literature. Artificial Intelligence Review, 1-58.

Zaki, M. J. (2005). Efficiently mining frequent trees in a forest:

Algorithms and applications. IEEE transactions on

knowledge and data engineering, 17(8), 1021-1035.
