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Abstract—In this paper, we establish second-order KKT suffi-
cient optimality conditions of a set-valued minimax programming
problem via second-order contingent epiderivative. We formulate
second-order duals of Mond-Weir type, Wolfe type, and mixed
type and further present corresponding duality results between
the stated primal and dual problems under the assumption of
second-order generalized cone convexity.
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I. INTRODUCTION

Minimax programming problems are special type of opti-
mization problems which arise in many fields of mathematics,
economics and operational research. In 1966, Bram (1966)
and Danskin (1966, 1967) used the Lagrange multiplier rule
to establish necessary optimality conditions of static minmax
programming problems. Later, Schmitendorf (1977) proved
necessary optimality conditions for existence of solutions of
the minmax programming problems. Various types of duality
theorems between primal and corresponding dual results are
formulated by Tanimoto (1981) in the year of 1981. Necessary
and sufficient optimality conditions for different types of
minmax programming problems are studied by many authors
like Bector and Bhatia (1985), Bector et al (1992), Chandra
and Kumar (1995), Datta and Bhatia (1984), Demyanov and
Malozehon (1974) and Zalmai (1985). They also studied
duality results of various types in terms of differentiability of
functions attached to the problems. In the year of 1999, Mehra
and Bhatia (1999) established necessary optimality conditions
of minmax programming problems. They also discussed du-
ality theorems of Mond-Weir type between primal and dual
problems with the help of generalized arcwise connectedness
assumption. Later, Li et al (2008a,b) established necessary
and sufficient optimality conditions of set-valued optimization
problems via the notion of higher-order contingent deriva-
tive. They also introduced the higher-order Mond-Weir type

dual for set-valued optimization problems and formulated the
corresponding duality theorems under convexity assumption.
Das and Nahak (2015) established the Karush-Kuhn-Tucker
(KKT) sufficient optimality conditions of set-valued optimiza-
tion problems via the assumptions of higher-order contingent
derivative and generalized cone convexity. They also con-
structed duality theorems of various types between primal and
corresponding dual problems. In 2017, Das and Nahak (2017c)
established the KKT sufficient optimality conditions of set-
valued minimax programming problems using the assumptions
of contingent epiderivative and generalized cone convexity and
proved the corresponding duality theorems of Wolfe, Mond-
Weir, and mixed types.

In this paper, we establish the second-order KKT sufficient
optimality conditions of a set-valued minimax programming
problem via the notion of second-order contingent epideriva-
tive. We also proved the second-order duality theorems of
Wolfe, Mond-Weir, and mixed types under the assumption of
second-order ρ-cone convexity.

This paper is organized as following manners. In Section 2,
we give some definitions as well as preliminaries of the theory
of set-valued optimization. We establish the second-order KKT
sufficient conditions of a set-valued minimax programming
problem (MP) in Section 3. Further, we develop various types
of duality theorems between primal and corresponding dual
problems with the help of the assumption of second-order
generalized cone convexity.

II. DEFINITIONS AND PRELIMINARIES

Let K be a nonempty subset of the m-dimensional Eu-
clidean space Rm. Then K is said to be a cone if λy ∈ K,
for all y ∈ K and λ ≥ 0. Furthermore, K is said to be
non-trivial if K 6= {0Rm}, proper if K 6= Rm, pointed if
K ∩ (−K) = {0Rm}, solid if int(K) 6= ∅, closed if K = K,
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and convex if K + K ⊆ K, where 0Rm is the zero element
of Rm and int(K) and K represent the interior and closure of
K, respectively.

The nonnegative orthant Rm
+ of Rm is defined by

Rm
+ = {y = (y1, ..., ym) ∈ Rm : yi ≥ 0,∀i = 1, 2, ...,m}.

Then Rm
+ becomes a pointed closed solid convex cone and

int(Rm
+ ) ∪ {0Rm} becomes a pointed solid convex cone in

Rm.
There are the following two notions of cone-orderings which

are mainly used in Rm with respect to the pointed solid convex
cone Rm

+ of Rm. For any two elements y1, y2 ∈ Rm, we have

y1 ≤ y2 if y2 − y1 ∈ Rm
+

and
y1 < y2 if y2 − y1 ∈ int(Rm

+ ).

We say y2 ≥ y1, if y1 ≤ y2 and y2 > y1, if y1 < y2.
There are two types of notions of minimality wrt. the

pointed solid convex cone Rm
+ of Rm.

Definition 2.1: Let B be a nonempty subset of Rm. Then
(i) y′ ∈ B is a minimal point of B if there is no y ∈ B\{y′},

such that y ≤ y′.
(ii) y′ ∈ B is a weakly minimal point of B if there exists no

y ∈ B, such that y < y′.
The sets of minimal points and weakly minimal points of B
are denoted by min(B) and w-min(B), respectively. We can
characterize these sets as

min(B) = {y′ ∈ B : (y′ − Rm
+ ) ∩B = {y′}}

and

w-min(B) = {y′ ∈ B : (y′ − int(Rm
+ )) ∩B = ∅}.

Similarly, the sets of maximal points and weakly maximal
points of B can be defined and characterized.

We now present the notions of contingent cone as well as
second-order contingent set in normed space.

Definition 2.2: Aubin (1981); Aubin and Frankowska (1990)
Let Y be a real normed space, ∅ 6= B ⊆ Y , and y′ ∈ B.
The contingent cone to B at y′, denoted by T (B, y′), can be
defined as follows:
y ∈ Y is an element T (B, y′) if there exist some sequences

{λn} in R, with λn → 0+ and {yn} in Y , with yn → y, such
that

y′ + λnyn ∈ B, ∀n ∈ N,

or, there exist some sequences {tn} in R, with tn > 0 and
{y′n} in B, with y′n → y′, such that

tn(y′n − y′)→ y.

If y′ ∈ int(B), then T (B, y′) = Y .
Proposition 2.1: Aubin and Frankowska (1990) The contin-

gent cone T (B, y′) is a closed cone, but not convex in general

and T (B, y′) ⊆
⋃
h>0

B − y′

h
.

Definition 2.3: Aubin (1981); Aubin and Frankowska
(1990); Cambini et al (1999) Let Y be a real normed space,
∅ 6= B ⊆ Y , y′ ∈ B, and u ∈ Y . The second-order contingent

set to B at y′ in the direction u, denoted by T 2(B, y′, u), can
be defined as
y ∈ Y is an element T 2(B, y′, u) if there exist some

sequences {λn} in R, with λn → 0+ and {yn} in Y , with
yn → y, such that

y′ + λnu+
1

2
λn

2yn ∈ B, ∀n ∈ N,

or, there exist some sequences {tn}, {t′n} in R, with tn, t′n >
0, tn →∞, t′n →∞, t′n

tn
→ 2, and {y′n} in B, with y′n → y′,

such that

tn(y′n − y′)→ u and t′n(tn(y′n − y′)− u)→ y.

Proposition 2.2: Zhu et al (2014) The second-order con-
tingent set T 2(B, y′, u) is a closed set, but is not a cone in
general. Even, T 2(B, y′, u) is not always convex but B is
convex. Also, T 2(B, y′, θY ) = T (T (B, y′), θY ) = T (B, y′).

Let X , Y be real normed spaces, K be a pointed solid
convex cone in Y , and 2Y be the set of all subsets of Y .
Let F : X → 2Y be a set-valued map from X to Y . Hence
F (x) ⊆ Y , ∀x ∈ X . The domain, image, graph, and epigraph
of F are defined by

dom(F ) = {x ∈ X : F (x) 6= ∅},

F (A) =
⋃
x∈A

F (x), for any A(6= ∅) ⊆ X,

gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)},

and

epi(F ) = {(x, y) ∈ X × Y : y ∈ F (x) +K}.

Let A be a nonempty subset of X , x′ ∈ A, F : X → 2Y

be a set-valued map, where A ⊆ dom(F ) and y′ ∈ F (x′).
The notion of contingent epiderivative of set-valued maps was
introduced by Jahn and Rauh (1997).

Definition 2.4: Jahn and Rauh (1997) A single-valued map
D↑F (x′, y′) : X → Y whose epigraph becomes identical with
the contingent cone to the epigraph of F at (x′, y′), i.e.,

epi(D↑F (x′, y′)) = T (epi(F ), (x′, y′)),

is said to be the contingent epiderivative of F at (x′, y′).
When f : X → R is a real single-valued map which is

continuous at x0 ∈ X and also convex, then

D↑f(x0, f(x0))(u) = f ′(x0)(u),∀u ∈ X,

where f ′(x0)(u) denotes the directional derivative of f at x0
in the direction u.

The notion of second-order contingent epiderivative of set-
valued maps was introduced by Jahn et al (2005).

Definition 2.5: Jahn et al (2005) A single-valued map
D2
↑F (x′, y′, u, v) : X → Y whose epigraph becomes identical

the second-order contingent set to the epigraph of F at
(x′, y′) ∈ gr(F ) in a direction (u, v) ∈ X × Y , i.e.,

epi(D2
↑F (x′, y′, u, v)) = T 2(epi(F ), (x′, y′), (u, v)),

is called the second-order contingent epiderivative of F at
(x′, y′) in the direction (u, v).
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Proposition 2.3: Aubin and Frankowska (1990) Let ∅ 6=
A ⊆ X , x′ ∈ A, u ∈ X , and f : X → Y be a
single-valued map. Let f be twice continuously differen-
tiable around x′. The second-order contingent epiderivative
D2
↑f(x′, f(x′), u, f ′(x′)u) of f at (x′, f(x′)) in the direction

(u, f ′(x′)u) is given by

D2
↑f(x′, f(x′), u, f ′(x′)u)(x) = f ′(x′)x+

1

2
f ′′(x′)(u, u),

x ∈ T 2(A, x′, u).

We now recall the concept of cone convexity of set-valued
maps, introduced by Borwein (1977) in the year of 1977.

Definition 2.6: Borwein (1977) Let A be a nonempty
convex subset of a real normed space X . A set-valued map
F : X → 2Y , with A ⊆ dom(F ), is said to be K-convex on
A if ∀x1, x2 ∈ A and λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.
It is obvious that if a set-valued map F : X → 2Y is K-

convex on A, then epi(F ) becomes a convex subset of X×Y .
The cone convexity of set-valued maps can be represented

via the notion of contingent epiderivative.
Lemma 2.1: Jahn and Rauh (1997) Let F : X → 2Y be

K-convex on a nonempty convex subset A of a real normed
space X . Then for all x, x′ ∈ A and y′ ∈ F (x′),

F (x)− y′ ⊆ D↑F (x′, y′)(x− x′) +K.

Definition 2.7: Let A be a nonempty subset of a real
normed space X and F : X → 2Y be a set-valued map,
with A ⊆ dom(F ). Let x′, u ∈ A, y′ ∈ F (x′), and
v ∈ F (u) + K. Assume that F is second-order contingent
epiderivable at (x′, y′) in the direction (u− x′, v − y′). Then
F is called second-order K-convex at (x′, y′) in the direction
(u− x′, v − y′) on A if
F (x)− y′ ⊆ D2

↑F (x′, y′, u−x′, v− y′)(x−x′) +K, ∀x ∈ A.
Definition 2.8: A set-valued map F : Rn → 2R

m

is said to
be upper semicontinuous if F+(V ) = {x ∈ Rn : F (x) ⊆ V }
is an open set in Rn for any open set V in Rm.

Definition 2.9: Let B be a nonempty subset of Rm. Then B
is called Rm

+ -semicompact if every open cover of complements
which is of the form {(yi +Rm

+ )c : yi ∈ B, i ∈ I} has a finite
subcover.

Definition 2.10: A set-valued map F : Rn → 2R
m

is said
to be Rm

+ -semicompact-valued if F (x) is Rm
+ -semicompact,

∀x ∈ dom(F ).
Corley (1987) established the existence theorem for maxi-
mization of set-valued optimization problems in which the
objective functions are cone semicompact-valued and upper
semicontinuous set-valued maps.

Theorem 2.1: Corley (1987) Let X,Y be real topological
vector spaces, A be a nonempty compact subset of X , and K
is pointed convex cone in Y . Let F : X → 2Y be a upper
semicontinuous and K-semicompact-valued set-valued map.
Then the problem max

⋃
x∈A

F (x) has a maximal point.

For simplicity, let us assume X = Rm, Y = R, and K = R+.
Let A be a nonempty subset of Rn and B be a nonempty
compact subset of Rm. Let Φ : Rn × Rm → 2R and G :
Rn → 2R

p

be two set-valued maps with

A×B ⊆ dom(Φ) and A ⊆ dom(G).

We consider a set-valued minimax programming problem
(MP).

minimize
x∈A

max
⋃
y∈B

Φ(x, y)

subject to G(x) ∩ (−Rp
+) 6= ∅,

(MP)

where the set-valued map Φ(x, .) : Rm → 2R is upper
semicontinuous and R+-semicompact-valued on B, for all
x ∈ A. Therefore, by Theorem 2.1, max

⋃
y∈B

Φ(x, y) exists,

for all x ∈ A. Since Φ(x, y) ⊆ R, for each x ∈ A the problem
max

⋃
y∈B

Φ(x, y) has only one maximal point.

The feasible set of the problem (MP) is given by

S = {x ∈ A : G(x) ∩ (−Rp
+) 6= ∅}.

For x ∈ A, define following sets by

I(x) = {j : 0 ∈ Gj(x), 1 ≤ j ≤ p},

J(x) = {1, 2, ..., p} \ I(x),

and

B(x) = {b ∈ B : max
⋃
y∈B

Φ(x, y) ∈ Φ(x, b)}.

Under the above assumptions, B(x) 6= ∅, for all x ∈ A.
Definition 2.11: Let x′ ∈ S and z′ = max

⋃
y∈B

Φ(x′, y).

Then (x′, z′) is said to be a minimizer of the problem (MP)
if for all x ∈ S and z = max

⋃
y∈B

Φ(x, y),

z′ ≤ z.

For special case, when φ : Rn × Rm → R and g : Rn →
Rp are single-valued maps, we have a minimax programming
problem (Schmitendorf (1977)) as

minimize
x∈A

max
⋃
y∈B

φ(x, y)

subject to g(x) ∈ (−Rp
+),

by considering Φ(x, y) = {φ(x, y)} and G(x) = {g(x)} in
the problem (MP).

III. MAIN RESULTS

Das and Nahak (2014, 2015, 2016a,b, 2017a,b,c, 2020)
introduced the notion of ρ-cone convexity for set-valued maps.
They establish the KKT sufficient conditions and develop the
duality results for various types of set-valued optimization
problems under contingent epiderivative as well as ρ-cone
convexity assumptions. For ρ = 0, we get the notion of cone
convexity for set-valued maps introduced by Borwein (1977).

Definition 3.1: Das and Nahak (2014, 2016b) Let A be a
nonempty convex subset of Rn, e ∈ int(Rm

+ ) and F : Rn →
2R

m

be a set-valued map, with A ⊆ dom(F ). Then F is said
to be ρ-Rm

+ -convex on A with respect to e if there exists ρ ∈ R
such that

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2)

+ρλ(1− λ)‖x1 − x2‖2e+ Rm
+ ,

∀x1, x2 ∈ A and ∀λ ∈ [0, 1].
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Das and Nahak (2016b) formulated a set-valued map which
is ρ-cone convex but not cone convex. They also presented
ρ-cone convexity for set-valued maps.

Theorem 3.1: Das and Nahak (2016b) Let A be a nonempty
convex subset of Rn, e ∈ int(Rm

+ ) and F : Rn → 2R
m

be ρ-
Rm

+ -convex on A with respect to e. Let x′ ∈ A and y′ ∈ F (x′).
Then,

F (x)−y′ ⊆ D↑F (x′, y′)(x−x′)+ρ‖x−x′‖2e+Rm
+ ,∀x ∈ A.

Das and Nahak (2015) also introduced the notion of second-
order ρ-cone convexity for set-valued maps using second-order
contingent epiderivative.

Definition 3.2: Das and Nahak (2015) Let A be a nonempty
subset of Rn, e ∈ int(Rm

+ ), and F : Rn → 2R
m

be a set-
valued map, with A ⊆ dom(F ). Let x′, u ∈ A, y′ ∈ F (x′),
and v ∈ F (u)+Rm

+ . Assume that F is second-order contingent
epiderivable at (x′, y′) in the direction (u− x′, v − y′). Then
F is said to be second-order ρ-Rm

+ -convex with respect to e
at (x′, y′) in the direction (u− x′, v − y′) on A if there exist
ρ ∈ R such that

F (x)− y′ ⊆
D2
↑F (x′, y′, u−x′, v−y′)(x−x′)+ρ‖x−x′‖2e+Rm

+ ,∀x ∈ A.
Remark 3.1: For u = x′ and v = y′, we have

F (x)−y′ ⊆ D↑F (x′, y′)(x−x′)+ρ‖x−x′‖2e+Rm
+ ,∀x ∈ A.

In this case, we have the first order ρ-Rm
+ -convexity via

contingent epiderivative.
If ρ > 0, then F is called strongly second-order ρ-Rm

+ -
convex, if ρ = 0, we have the notion of second-order Rm

+ -
convexity, and if ρ < 0, then F is called weakly second-order
ρ-Rm

+ -convex.
Obviously, strongly second-order ρ-Rm

+ -convexity ⇒ second-
order Rm

+ -convexity ⇒ weakly second-order ρ-Rm
+ -convexity.

Das and Nahak (2015) developed a set-valued map F : R →
2R

2

, which is second-order ρ-R2
+-convex for some ρ, but is

not second-order Rm
+ -convex.

Remark 3.2: In case of single-valued map, Definition 3.2
coincides with the existing one. Let X,Y be real normed
spaces, K be a pointed solid convex cone in Y , e ∈ int(K),
u ∈ X , and v ∈ Y . Let f : X → Y be second-order
continuously differentiable function at x′ ∈ X . By consid-
ering F (x) = {f(x)}, from Definition 3.2 and Proposition
2.3, we can conclude that f is said to be second-order ρ-
K-convex with respect to e at (x′, f(x′)) in the direction
(u− x′, v − f(x′)) if there exists ρ ∈ R such that

f(x)− f(x′) ∈ f ′(x′)(x− x′) +
1

2
f ′′(x′)(u− x′, u− x′)

+ρ‖x− x′‖2e+K,∀x ∈ X,

where v − f(x′) = f ′(x′)(u− x′).
The followings are some special cases.
When Y = Rm, K = Rm

+ , f = (f1, f2, ..., fm), and e =
(1, 1, ..., 1) = 1Rm , we have

fi(x)− fi(x′) ≥ f ′i(x′)(x− x′) +
1

2
f ′′i (x′)(u− x′, u− x′)

+ρ‖x− x′‖2,∀x ∈ X and i = 1, 2, ...,m.

When Y = R, K = R+, and e = 1, we have

f(x)− f(x′) ≥ f ′(x′)(x− x′) +
1

2
f ′′(x′)(u− x′, u− x′)

+ρ‖x− x′‖2,∀x ∈ X.

When X = Rn, Y = R, K = R+, and e = 1, we have

f(x)− f(x′) ≥ (x− x′)T∇f(x′) +
1

2
(u− x′)TH(x′)(u− x′)

+ρ‖x− x′)‖2,∀x ∈ X,

where ∇f(x′) and H(x′) are the gradient and Hessain matrix
of f at x′, respectively.

A. Second-order optimality conditions

The second-order KKT sufficient conditions of the set-
valued minimax programming problem (MP) are developed
under second-order ρ-cone convexity for set-valued maps.

Theorem 3.2: (Second-order sufficient optimality condi-
tions) Let A be a nonempty convex subset of Rn, x′ ∈ S,
and z′ = max

⋃
y∈B

Φ(x′, y). Suppose that there exist a positive

integer k, z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k) with
k∑

i=1

z∗i 6= 0,

and w∗j ≥ 0, w′j ∈ Gj(x
′) ∩ (−R+), (1 ≤ j ≤ p), such that

k∑
i=1

z∗iD
2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)

+

p∑
j=1

w∗jD
2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′) ≥ 0,∀x ∈ A
(III.1)

and

w∗jw
′
j = 0,∀j = 1, 2, ..., p. (III.2)

Let ρi, ρ′j ∈ R, for i = 1, 2, ..., k and j = 1, 2, ..., p. Let t ∈ A,
r ∈ Φ(t, yi)+R+, and s ∈ Gj(u)+R+. Assume that Φ(., yi),
(1 ≤ i ≤ k), is second-order ρi-R+-convex at (x′, z′) in the
direction (t − x′, r − z′) and Gj , (1 ≤ j ≤ p) is second-
order ρ′j-R+-convex (x′, w′j) in the direction (t− x′, s−w′j),
respectively, with respect to 1, on A, with

k∑
i=1

z∗i ρi +

p∑
j=1

w∗j ρ
′
j ≥ 0, (III.3)

then (x′, z′) is a minimizer of the problem (MP).
Proof: Assume that (x′, z′) is not a minimizer of the

problem (MP).
Hence there exist x ∈ S and z = max

⋃
y∈B

Φ(x, y), such that

z < z′.

As yi ∈ B(x′) (1 ≤ i ≤ k), we have

max
⋃
y∈B

Φ(x′, y) ∈ Φ(x′, yi).

As z′ = max
⋃

y∈B
Φ(x′, y), we have

z′ ∈ Φ(x′, yi),∀i = 1, 2, ..., k.
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Choose
zi ∈ Φ(x, yi),∀i = 1, 2, ..., k.

Again, as z = max
⋃

y∈B
Φ(x, y) and yi ∈ B(x′) ⊆ B, we have

zi ≤ z.

Therefore,
zi ≤ z < z′.

Hence,
k∑

i=1

z∗i zi <

k∑
i=1

z∗i z
′.

As x ∈ S, there exists

wj ∈ Gj(x) ∩ (−R+), (1 ≤ j ≤ p).

Since w∗j ≥ 0, (1 ≤ j ≤ p), we have

w∗jwj ≤ 0,∀j = 1, 2, ..., p.

So,
p∑

j=1

w∗jwj ≤ 0.

As w∗jw
′
j = 0,∀j = 1, 2, ..., p, we have

p∑
j=1

w∗jwj ≤
p∑

j=1

w∗jw
′
j .

Hence,
k∑

i=1

z∗i zi +

p∑
j=1

w∗jwj <

k∑
i=1

z∗i z
′ +

p∑
j=1

w∗jw
′
j . (III.4)

Since Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-convex at
(x′, z′) in the direction (t − x′, r − z′) and Gj , (1 ≤ j ≤ p)
is second-order ρ′j-R+-convex (x′, w′j) in the direction (t −
x′, s− w′j), respectively, with respect to 1, on A, we have

Φ(x, yi)− z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)
+ρi‖x− x′‖2 + R+

and

Gj(x)− w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′)
+ρ′j‖x− x′‖2 + R+.

Therefore,

zi − z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)
+ρi‖x− x′‖2 + R+

(III.5)

and

wj − w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′)
+ρ′j‖x− x′‖2 + R+.

(III.6)

From (III.1), (III.3), (III.5), and (III.6), we have
k∑

i=1

z∗i (zi − z′) +

p∑
j=1

w∗j (wj − w′j) ≥ 0,

which contradicts (III.4).
Consequently, (x′, z′) is a minimizer of the problem (MP).

B. Second-order Mond-Weir type dual

We consider a second-order Mond-Weir type dual (MWD)
of the problem (MP), where Φ(., yi) and Gj are second-order
contingent epiderivable set-valued maps, where yi ∈ B(x′)
and x′ ∈ A.

maximize z′ (MWD)

subject to
k∑

i=1

z∗iD
2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)

+

p∑
j=1

w∗jD
2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′) ≥ 0,

∀x ∈ A,
for some k ∈ N, yi ∈ B(x′), t ∈ A,
r ∈ Φ(t, yi) + R+, s ∈ Gj(u) + R+,
p∑

j=1

w∗jw
′
j ≥ 0,

x′ ∈ A, z′ = max
⋃
y∈B

Φ(x′, y),

w′ = (w′1, w
′
2, ..., w

′
p), w′j ∈ Gj(x

′),

z∗ = (z∗1 , z
∗
2 , ..., z

∗
k), w∗ = (w∗1 , w

∗
2 , ..., w

∗
p),

z∗i ≥ 0, w∗j ≥ 0, (1 ≤ i ≤ k, 1 ≤ j ≤ p),

and
k∑

i=1

z∗i 6= 0.

Definition 3.3: A feasible point (x′, z′, w′, z∗, w∗) of the
second-order Mond-Weir type dual problem (MWD) is
called a maximizer of (MWD) if for all feasible points
(x, z, w, z∗1 , w

∗
1) of the problem (MWD),

z ≤ z′.

Theorem 3.3: (Second-order weak duality) Let A be
a nonempty convex subset of Rn and x0 ∈ S. Let
(x′, z′, w′, z∗, w∗) be a feasible point of the problem (MWD).
Let t ∈ A, r ∈ Φ(t, yi) + R+, and s ∈ Gj(u) + R+.
Assume that Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-
convex at (x′, z′) in the direction (t − x′, r − z′) and Gj ,
(1 ≤ j ≤ p) is second-order ρ′j-R+-convex (x′, w′j) in the
direction (t − x′, s − w′j), respectively, with respect to 1, on
A and Eqn. (III.3) is satisfied. Then,

max
⋃
y∈B

Φ(x0, y) ≮ z′.

Proof: We can prove the theorem by the method of
contradiction.
Suppose that for z0 = max

⋃
y∈B

Φ(x0, y),

z0 < z′

As z′ = max
⋃

y∈B
Φ(x′, y), we have

z′ ∈ Φ(x′, yi),∀i = 1, 2, ..., k.

Choose
zi ∈ Φ(x0, yi),∀i = 1, 2, ..., k.
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Again, as z0 = max
⋃

y∈B
Φ(x0, y) and yi ∈ B(x′) ⊆ B, we

have
zi ≤ z0.

Therefore,
zi ≤ z0 < z′.

Hence,
k∑

i=1

z∗i zi <

k∑
i=1

z∗i z
′.

As x0 ∈ S, there exists wj ∈ Gj(x0) ∩ (−R+), (1 ≤ j ≤ p).
Since w∗j ≥ 0, (1 ≤ j ≤ p), we have

w∗jwj ≤ 0,∀j = 1, 2, ..., p.

Therefore,
p∑

j=1

w∗jwj ≤
p∑

j=1

w∗jw
′
j .

Hence,
k∑

i=1

z∗i zi +

p∑
j=1

w∗jwj <

k∑
i=1

z∗i z
′ +

p∑
j=1

w∗jw
′
j . (III.7)

Since Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-convex at
(x′, z′) in the direction (t − x′, r − z′) and Gj , (1 ≤ j ≤ p)
is second-order ρ′j-R+-convex (x′, w′j) in the direction (t −
x′, s− w′j), respectively, with respect to 1, on A, we have

Φ(x0, yi)− z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x0 − x′)
+ρi‖x0 − x′‖2 + R+

and

Gj(x0)− w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x0 − x′)
+ρ′j‖x0 − x′‖2 + R+.

Therefore,

zi − z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x0 − x′)
+ρi‖x0 − x′‖2 + R+

(III.8)

and

wj − w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x0 − x′)
+ρ′j‖x0 − x′‖2 + R+.

(III.9)

From the constraints of (MWD) and Eqs. (III.3), (III.8), and
(III.9), we have

k∑
i=1

z∗i (zi − z′) +

p∑
j=1

w∗j (wj − w′j) ≥ 0,

which contradicts (III.7). Hence,

z0 ≮ z′.

Therefore,
max

⋃
y∈B

Φ(x0, y) ≮ z′.

It completes the proof of the theorem.
Theorem 3.4: (Second-order strong duality) Let (x′, z′) be

a minimizer of the problem (MP) and w′j ∈ Gj(x
′)∩ (−R+),

(1 ≤ j ≤ p). Suppose that for a positive integer k,

z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k), with
k∑

i=1

z∗i 6= 0,

and w∗j ≥ 0, (1 ≤ j ≤ p), Eqs. (III.1) and (III.2) are
satisfied at (x′, z′, w′, z∗, w∗). Then (x′, z′, w′, z∗, w∗) is a
feasible solution of (MWD). If the second-order weak duality
Theorem 3.3 holds between the problems (MP) and (MWD),
then (x′, z′, w′, z∗, w∗) is a maximizer of (MWD).

Proof: As the Eqs. (III.1) and (III.2) are satisfied at
(x′, z′, w′, z∗, w∗), we have

k∑
i=1

z∗iD
2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)

+

p∑
j=1

w∗jD
2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′) ≥ 0,∀x ∈ A

and

w∗jw
′
j = 0,∀j = 1, 2, ..., p.

Hence, (x′, z′, w′, z∗, w∗) is a feasible solution of (MWD).
Assume that the second-order weak duality Theorem 3.3
holds between the problems (MP) and (MWD) and
(x′, z′, w′, z∗, w∗) is not a maximizer of (MWD).
Hence there exists a feasible point (x, z, w, z∗1 , w

∗
1) of

(MWD), such that
z′ < z.

It contradicts the second-order weak duality Theorem 3.3.
Hence, (x′, z′, w′, z∗, w∗) is a maximizer of (MWD).

Theorem 3.5: (Second-order converse duality) Let
(x′, z′, w′, z∗, w∗) be a feasible point of the problem
(MWD) and A be a nonempty convex subset of Rn. Let
t ∈ A, r ∈ Φ(t, yi) + R+, and s ∈ Gj(u) + R+. Assume
that Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-convex at
(x′, z′) in the direction (t − x′, r − z′) and Gj , (1 ≤ j ≤ p)
is second-order ρ′j-R+-convex (x′, w′j) in the direction
(t−x′, s−w′j), respectively, with respect to 1, on A and Eqn.
(III.3) is satisfied. Let x′ ∈ S. Then (x′, y′) is a minimizer of
(MP).

Proof: Assume that (x′, z′) is not a minimizer of (MP).
Hence there exist x ∈ S and z = max

⋃
y∈B

Φ(x, y), such that

z < z′.

As yi ∈ B(x′) (1 ≤ i ≤ k), we have

max
⋃
y∈B

Φ(x′, y) ∈ Φ(x′, yi).

As z′ = max
⋃

y∈B
Φ(x′, y), we have

z′ ∈ Φ(x′, yi),∀i = 1, 2, ..., k.

Choose
zi ∈ Φ(x, yi),∀i = 1, 2, ..., k.

Again, as z = max
⋃

y∈B
Φ(x, y) and yi ∈ B(x′) ⊆ B, we have

zi ≤ z.
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Therefore,
zi ≤ z < z′.

Hence,
k∑

i=1

z∗i zi <

k∑
i=1

z∗i z
′.

As x ∈ S, there exists

wj ∈ Gj(x) ∩ (−R+), (1 ≤ j ≤ p).

Since w∗j ≥ 0, (1 ≤ j ≤ p), we have

w∗jwj ≤ 0,∀j = 1, 2, ..., p.

So,
p∑

j=1

w∗jwj ≤ 0.

The constraints of the dual problem (MWD) give
p∑

j=1

w∗jw
′
j ≥ 0.

Therefore,
p∑

j=1

w∗jwj ≤
p∑

j=1

w∗jw
′
j .

Hence,
k∑

i=1

z∗i zi +

p∑
j=1

w∗jwj <

k∑
i=1

z∗i z
′ +

p∑
j=1

w∗jw
′
j . (III.10)

Since Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-convex at
(x′, z′) in the direction (t − x′, r − z′) and Gj , (1 ≤ j ≤ p)
is second-order ρ′j-R+-convex (x′, w′j) in the direction (t −
x′, s− w′j), respectively, with respect to 1, on A, we have

Φ(x, yi)− z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)
+ρi‖x− x′‖2 + R+

and

Gj(x)− w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′)
+ρ′j‖x− x′‖2 + R+.

Therefore,

zi − z′ ⊆ D2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)
+ρi‖x− x′‖2 + R+

(III.11)

and

wj − w′j ⊆ D2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′)
+ρ′j‖x− x′‖2 + R+.

(III.12)

From the constraints of (MWD) and Eqs. (III.3), (III.11), and
(III.12), we have

k∑
i=1

z∗i (zi − z′) +

p∑
j=1

w∗j (wj − w′j) ≥ 0.

It contradicts (III.10).
Consequently, (x′, z′) is a minimizer of the problem (MP).

C. Second-order Wolfe type dual

We consider a second-order Wolfe type dual (WD) of
the problem (MP), where Φ(., yi) and Gj are second-order
contingent epiderivable set-valued maps, where yi ∈ B(x′)
and x′ ∈ A.

maximize z′ +

p∑
j=1

w∗jw
′
j (WD)

subject to
k∑

i=1

z∗iD
2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)

+

p∑
j=1

w∗jD
2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′) ≥ 0,

∀x ∈ A,
for some k ∈ N, yi ∈ B(x′), t ∈ A,
r ∈ Φ(t, yi) + R+, s ∈ Gj(u) + R+,

x′ ∈ A, z′ = max
⋃
y∈B

Φ(x′, y),

w′ = (w′1, w
′
2, ..., w

′
p), w′j ∈ Gj(x

′),

z∗ = (z∗1 , z
∗
2 , ..., z

∗
k), w∗ = (w∗1 , w

∗
2 , ..., w

∗
p),

z∗i ≥ 0, w∗j ≥ 0, (1 ≤ i ≤ k, 1 ≤ j ≤ p),

and
k∑

i=1

z∗i 6= 0.

Definition 3.4: A feasible point (x′, z′, w′, z∗, w∗) of the
second-order Wolfe type dual problem (WD) is called a
maximizer of (WD) if for all feasible points (x, z, w, z∗, w∗)
of the problem (WD),

z +

p∑
j=1

w∗jwj ≤ z′ +
p∑

j=1

w∗jw
′
j ,

where w′ = (w′1, w
′
2, ..., w

′
p), w∗ = (w∗1 , w

∗
2 , ..., w

∗
p), w =

(w1, w2, ..., wp), and w∗ = (w∗1, w
∗
2, ..., w

∗
p) ∈ Rp.

We can prove the Wolfe type duality results for the problem
(MP). The proofs are very similar to those of Theorems 3.3 -
3.5, and hence we omit.

Theorem 3.6: (Second-order weak duality) Let A be
a nonempty convex subset of Rn and x0 ∈ S. Let
(x′, z′, w′, z∗, w∗) be a feasible point of the problem (WD).
Let t ∈ A, r ∈ Φ(t, yi) + R+, and s ∈ Gj(u) + R+.
Assume that Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-
convex at (x′, z′) in the direction (t − x′, r − z′) and Gj ,
(1 ≤ j ≤ p) is second-order ρ′j-R+-convex (x′, w′j) in the
direction (t − x′, s − w′j), respectively, with respect to 1, on
A and Eqn. (III.3) is satisfied. Then,

max
⋃
y∈B

Φ(x0, y) ≮ z′ +

p∑
j=1

w∗jw
′
j .

Theorem 3.7: (Second-order strong duality) Let (x′, z′) be
a minimizer of the problem (MP) and w′j ∈ Gj(x

′)∩ (−R+),
(1 ≤ j ≤ p). Suppose that for a positive integer k,

z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k), with
k∑

i=1

z∗i 6= 0,
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and w∗j ≥ 0, (1 ≤ j ≤ p), Eqs. (III.1) and (III.2) are
satisfied at (x′, z′, w′, z∗, w∗). Then (x′, z′, w′, z∗, w∗) is a
feasible solution of (WD). If the second-order weak duality
Theorem 3.6 holds between the problems (MP) and (WD),
then (x′, z′, w′, z∗, w∗) is a maximizer of (WD).

Theorem 3.8: (Second-order converse duality) Let
(x′, z′, w′, z∗, w∗) be a feasible point of the problem (WD),

with
p∑

j=1

w∗jw
′
j ≥ 0, and A be a nonempty convex subset of

Rn. Let t ∈ A, r ∈ Φ(t, yi) + R+, and s ∈ Gj(u) + R+.
Assume that Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-
convex at (x′, z′) in the direction (t − x′, r − z′) and Gj ,
(1 ≤ j ≤ p) is second-order ρ′j-R+-convex (x′, w′j) in the
direction (t − x′, s − w′j), respectively, with respect to 1, on
A and Eqn. (III.3) is satisfied. Let x′ ∈ S. Then (x′, y′) is a
minimizer of (MP).

D. Second-order mixed type dual

We consider a second-order mixed type dual (MD) of
the problem (MP), where Φ(., yi) and Gj are second-order
contingent epiderivable set-valued maps, where yi ∈ B(x′)
and x′ ∈ A.

maximize z′ +

p∑
j=1

w∗jw
′
j (MD)

subject to
k∑

i=1

z∗iD
2
↑Φ(., yi)(x

′, z′, t− x′, r − z′)(x− x′)+

p∑
j=1

w∗jD
2
↑Gj(x

′, w′j , t− x′, s− w′j)(x− x′) ≥ 0,

∀x ∈ A,
for some k ∈ N, yi ∈ B(x′), t ∈ A,
r ∈ Φ(t, yi) + R+, s ∈ Gj(u) + R+,
p∑

j=1

w∗jw
′
j ≥ 0, x′ ∈ A, z′ = max

⋃
y∈B

Φ(x′, y),

w′ = (w′1, w
′
2, ..., w

′
p), w′j ∈ Gj(x

′),

z∗ = (z∗1 , z
∗
2 , ..., z

∗
k), w∗ = (w∗1 , w

∗
2 , ..., w

∗
p),

z∗i ≥ 0, w∗j ≥ 0, (1 ≤ i ≤ k, 1 ≤ j ≤ p),

and
k∑

i=1

z∗i 6= 0.

Definition 3.5: A feasible point (x′, z′, w′, z∗, w∗) of the
second-order mixed type dual problem (MD) is said to be a
maximizer of (MD) if for all feasible points (x, z, w, z∗, w∗)
of the problem (MD),

z +

p∑
j=1

w∗jwj ≤ z′ +
p∑

j=1

w∗jw
′
j ,

where w′ = (w′1, w
′
2, ..., w

′
p), w∗ = (w∗1 , w

∗
2 , ..., w

∗
p), w =

(w1, w2, ..., wp), and w∗ = (w∗1, w
∗
2, ..., w

∗
p) ∈ Rp.

We can prove the mixed type duality results of the problem
(MP). The proofs are very similar to those of Theorems 3.3 -
3.5, and hence we omit.

Theorem 3.9: (Second-order weak duality) Let A be
a nonempty convex subset of Rn and x0 ∈ S. Let
(x′, z′, w′, z∗, w∗) be a feasible point of the problem (MD).
Let t ∈ A, r ∈ Φ(t, yi) + R+, and s ∈ Gj(u) + R+.
Assume that Φ(., yi), (1 ≤ i ≤ k), is second-order ρi-R+-
convex at (x′, z′) in the direction (t − x′, r − z′) and Gj ,
(1 ≤ j ≤ p) is second-order ρ′j-R+-convex (x′, w′j) in the
direction (t − x′, s − w′j), respectively, with respect to 1, on
A and Eqn. (III.3) is satisfied. Then,

max
⋃
y∈B

Φ(x0, y) ≮ z′ +

p∑
j=1

w∗jw
′
j .

Theorem 3.10: (Second-order strong duality) Let (x′, z′) be
a minimizer of the problem (MP) and w′j ∈ Gj(x

′)∩ (−R+),
(1 ≤ j ≤ p). Assume that for a positive integer k,

z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k), with
k∑

i=1

z∗i 6= 0,

and w∗j ≥ 0, (1 ≤ j ≤ p), Eqs. (III.1) and (III.2) are
satisfied at (x′, z′, w′, z∗, w∗). Then (x′, z′, w′, z∗, w∗) is a
feasible solution of (MD). If the second-order weak duality
Theorem 3.9 holds between the problems (MP) and (MD),
then (x′, z′, w′, z∗, w∗) is a maximizer of (MD).

Theorem 3.11: (Second-order converse duality) Let
(x′, z′, w′, z∗, w∗) be a feasible point of (MD) and A be a
nonempty convex subset of Rn. Let t ∈ A, r ∈ Φ(t, yi)+R+,
and s ∈ Gj(u) + R+. Assume that Φ(., yi), (1 ≤ i ≤ k),
is second-order ρi-R+-convex at (x′, z′) in the direction
(t − x′, r − z′) and Gj , (1 ≤ j ≤ p) is second-order ρ′j-R+-
convex (x′, w′j) in the direction (t− x′, s−w′j), respectively,
with respect to 1, on A and Eqn. (III.3) is satisfied. Let x′ ∈ S.
Then (x′, y′) is a minimizer of (MP).

IV. CONCLUSIONS

In this paper, we develop the second-order KKT sufficient
conditions of a set-valued minimax programming problem
(MP) under second-order contingent epiderivative for set-
valued maps. The duals of second-order Mond-Weir type,
Wolfe type, and mixed type are formulated for the problem
(MP), and the corresponding duality results are developed via
second-order ρ-cone convexity assumption.
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