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Abstract: We derive a set of non-linear, non-homogeneous and 

non-autonomous differential equations for the motion of a system 

of two inelastic cable-connected artificial satellites under the 

influence of shadow of the earth, solar radiation pressure, 

oblateness of the earth, air resistance and earth’s magnetic field. 

The motion of the system is studied relative to its center of mass 

which has been assumed to move along a Keplerian elliptical orbit. 

The equation of relative motion of the system has been obtained. 

Equations of motion have been obtained in Rotating frame of 

reference and thereafter in Nechvile’s Co-ordinate System. 

Applying simulations, the equations of motion lead to Jacobian 

integral of motion of the system. Further simulations and the 

equations of motion give rise to one equilibrium position of motion 

of the system concerned under the above mentioned perturbative 

forces. 

 

Index Terms: Elliptical orbit, Equations of motion, Inelastic 

cable, Nechvile’s co-ordinate system, Rotating frame of reference, 

Two satellites system. 

 

I. INTRODUCTION 

Beletsky and Novikova (1969) studied the motion of a system 

of two cable-connected satellites in the central gravitational field 

of force relative to its center of mass. This study assumed that 

the two satellites are moving in the plane of the center of mass. 

Singh and Demin (1972) and Singh (1973) investigated the 

problem in two and three dimensional cases. Das et al. (1976) 

studied the effect of magnetic force on the motion of a system of 

two cable-connected satellites in orbit. Sinha and Singh (1987) 

studied effect of solar radiation pressure on the motion and 

stability of the system of two inter connected satellites when 

their center of mass moves in circular orbit. Again, Sinha and 

Singh (1988) could generalize the above problem by considering 

the center of mass of the system moving in elliptical orbit. 

Beletsky and Levin (1993) studied dynamics of space tether’s 

systems. Kurpa et al. (2000) explained about a new concept of 

space flight for tethered satellite systems. Again Kurpa et al. 

(2006) studied about modelling, dynamics and control of 

tethered satellite systems. Sharma and Narayan (2001) studied 

non – linear oscillation of inter connected satellite system under 

the combined influence of the solar radiation pressure and 

dissipative forces of general nature. Again Sharma and Narayan 

(2002) investigated effect of solar radiation pressure on the 

motion and stability of inter connected satellites system in orbit. 

Singh et. al. (2001) studied non- linear effects on the motion and 

stability of an inter connected satellites system orbiting around 

an oblate Earth. Celled and Sidorenko (2008) studied some 

properties of dumb-bell satellite altitude dynamics. Umar (2013) 

explained development of satellite technology and its impact on 

social life. Kumar and Srivastava (2006) studied evolutional and 

non-evolutional motion of a system of two cable-connected 

artificial satellites under some perturbative forces.  Kumar and 

Prasad (2015) studied about non-linear planer oscillation of a 

cable–connected satellites system and non–resonance. Kumar 

and Kumar (2016) studied equilibrium positions of a cable-

connected satellites system under several influences. Kumar 

(2018) studied liberation points of a cable–connected satellites 

system under the influence of solar radiation pressure, earth’s 

magnetic field, shadow of the earth and air resistance: circular 

orbit.   

The work is a physical and mathematical idealization of real 

space system. We establish the equations of motion of the 

system under the influence of shadow of the earth, solar 
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radiation pressure, oblateness of the earth, air resistance and 

earth’s magnetic field. The influence of the above mentioned 

perturbations on the system has been studied singly and by a 

combination of any two or three or four of them by various 

workers, but never conjointly all at a time. Therefore, these 

could not give a real picture of motion of the system. This fact 

has initiated the present research work. The satellites are 

connected by a light, flexible, inextensible and non-conducting 

string. Central attractive force of the earth will be the main force 

and all other forces, being small enough are considered here as 

perturbing forces. Since masses of the satellites are small and 

distances between the satellites and other celestial bodies are 

very large, the gravitational forces of attraction between the 

satellites and other celestial bodies including the sun have been 

neglected. The satellites are considered as charged material 

particles. Here, nutation and wobbling of the orbit of the center 

of mass of the system are not taken into account.  

 

II. EQUATION OF MOTION OF THE CENTRE OF 

MASS OF THE SYSTEM 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the first principle of physics, we write the Lagrange's 

equations of motion of the first kind for the system as  

( )1 1 1 2
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1 1

3
mr m k

mr r r Q(r H) Bn r
r r


  =− + − +  + −

 

1 1 1 1acm r r−                                                                 (1) 

and 

( )2 2 2 2
2 2 2 1 2 2 2 2 23 5

2 2

3
mr m k

mr r r Q(r H) Bn r
r r

  =− + − +  + −
 

2 2 2 2ac m r r−                                                                (2) 

with the condition of constraint 

 
1 2r r−                                      (3) 

 

If the inequality sign holds good in (3), then the system moves 

without any constraint. This is called “Free motion” of the 

system. If equality sign holds good, then the system moves with 

the active constraint. This is called “Constrained motion”. But in 

practice, motion of the system is a combination of free and 

constrained motion. It is based on the fact that with the lapse of 

time constrained motion of the system gets converted into free 

motion.  

Where 1m and 2m  are masses of the two satellites. 1r  and 2r  

are the radius vectors of the particles 1m  and 2m  respectively 

with respect to the earth’s center E as shown in fig. 1. is the 

product of mass of the earth and gravitational constant.   is 

undetermined Lagrange’s multiplier arising due to constraint for 

the finite length of the cable. Q1, Q2 are charges of the two 

satellites. His the intensity of earth’s magnetic field. 
 
is a 

shadow function which depends on the illumination of the 

system of satellites by the sun rays. If   is equal to zero, then 

the system is affected by the shadow of the earth. If 
 
is equal 

to one, then the system is not within the said shadow. 1B  and 

2B are the absolute values of the forces due to the direct solar 

pressure on 1m
 
and 2m  respectively. 1n  and 2n  are the unit 

vectors in the direction of the sun rays towards 1m  and 2m  

respectively. c1and c2 are the Ballistic coefficients. a is the 

average density of the atmosphere.  is the length of the cable 

connecting 1m  and 2m . 

  

Also, 
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e e
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R R
, ,

3 2R
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 


= = − =                        (4) 

 R is the earth's oblateness. is angular velocity of 

the earth's rotation. eR is equatorial radius of the earth. eg  is 

the force of gravity. 

 As 1n  and 2n  are almost parallel, we replace them by 

n . Adding the equations (1) and (2), we obtain 
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Fig. 1: Diagrammatical representation of the cable-

connected satellites system under several influences 
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Where, ( )1 2m m m= + , total mass of the system 

1 1 2 2

1 2

mr mr
R

m m
 +

= + 
radius vector of center of mass of the 

system, with respect to the origin of the attracting center. 

j jr R = +   (j = 1, 2) 

j = radius vector of the particle jm  with respect  

to the center of mass of the system C as shown in fig. 1.   

           (6) 

 

We are interested in relative motion of the system with 

respect to the center of mass. The center of mass is the origin of 

the frame of reference. Hence, we shall have 

 1 1 2 2 0m m + =                       (7) 

Expanding equation (5) in power of 
j

R


upto the first order 

of infinitesimals, we obtain 
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Where, 
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Due to the above relation (7), we write  

 

 1F  = 0                      (10) 

Since j jr  , ~jr R and 1j

R


 ,  we write 

 2F =0                      (11) 

On the other hand, 2k  is very small. Now using (10) and (11) 

and neglecting the terms of 2k , we write equation (8) as 

 

( )1 2 1 2 13 ( )( ) 0
mR

mR Q Q R H B B n aR
R
 + + +  − + + =

.. 

(12) 

 

Again, the effect of air resistance on the motion of the system 

may be neglected as it is of perturbative nature. Therefore, we 

write (12) as 

( )1 2 1 23 ( )( ) 0
mR

mR Q Q R H B B n
R
 + + +  − + =

       

(13) 

Taking dot product of both the sides of equation (13) with R, 

we obtain 

 
3

.
. 0

mRR
mRR

R


+ =                     (14) 

Where 

 . 0nR=                      (15) 

(15) is the usual case for earth's satellites. 

 Integrating (14) we get,  

2 2
R A

R


= +                                    (16) 

A = constant of Integration. 

It shows that the center of mass of the system describes an 

elliptical orbit. In fact, (16) is the equation of energy. 

 

III. EQUATION OF RELATIVE MOTION OF THE 

SYSTEM 

In order to obtain relative equation of motion of the system 

with respect to the center of mass, we subtract equation (2) from 

equation (1) and get 
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From (6) and (7), we have 
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Therefore, vector equation of motion of 2m  can be written as 
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Where,                      

( )3 3 .E
E E r rH K K e e

R
 = −                            

(19 a) 

EK  is the unit vector along the axis of magnetic dipole of the 

earth. 

re  is a unit vector along the radius vector R. 

E  is the value of the magnetic moment of the earth’s di-

pole. 

 

  

(19) describes the relative motion of the satellite of mass 2m . 

The motion of the satellite of mass 1m can be easily determined 

with the help of (7). 

 

 Our ultimate aim is to obtain the equations of motion of 

the system in Cartesian form. Therefore, we shall make use of 

Cartesian transformations and substitutions in the next part of 

the work. 

 Let ( ), ,X Y Z be the co-ordinates of the satellite 

2m with the origin at the center of mass. Next, we write the most 

common expressions as follows  

 

 

( ) ( ) ( )sin cos cos cos cosEK v i v j i k = + +
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2 2 2 2cos cos cos sin sinBn B i B j B k =−  −  + 
                                                               (20) 

 

Where  is argument of the perigee. v is true anomaly of 

the center of mass of the system. i  is inclination of the orbit 

with the equatorial plane.  is inclination of the oscillatory 

plane of the masses m1 and m2 with the orbital plane of the 

center of mass of the system.  is inclination of the ray. Now, 

we can easily write the Cartesian equivalent of the vector 

equation (19) as 
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(21) 

The condition of constraint (3) becomes 

 
2 2 2 1X Y Z+ +                      (22) 

 

IV. EQUATIONS OF MOTION IN ROTATING FRAME 

OF REFERENCE 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In space, all the celestial bodies are in motion. Therefore, we 

consider the rotating frame of reference to understand the exact 

picture of motion of the system concerned. We transform 

equations of motion (21) from old frame of reference to new 

rotating frame of reference. For this, we put the general 

substitutions for the required transformation as  

 ( )cos sinX v v = − , 

 ( )sin cosY v v = +  

and 

Fig. 2: The cable-connected satellites system and 

the rotating frame of reference 
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 Z =                       (23) 

where, axis   is along the radius vector R, axis is towards 

the transversal to the orbit of the center of mass in the direction 

of motion and axis  is being directed along the normal to the 

orbital plane of the center of mass of the system. 

 

 With the help of (23), we write (21) as  
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The condition of constraint (22) takes the form 

 
2 2 2 1  + +                      (25) 

 

V. EQUATIONS OF MOTION INNECHVILE'S  

CO-ORDINATESYSTEM 

 

 For further studies of the problem, we introduce 

Nechvile's co-ordinate system (1926), i.e. a dilation. 

Interpretation of this transformation is to insert a physical 

quantity “eccentricity” in the required equations of motion. 

From the first principle of physics, it is clear that the value of 

eccentricity determines nature of the orbit. Next, we put 
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Where,  
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 e is eccentricity of the elliptical orbit of center of mass 

of the system. vis the true anomaly as the independent variable 

in place of time t. We may deduce a relation for t and v as 
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p= focal parameter. 
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 Putting first and second time derivatives obtained from 

(26) and the values of (28) and (29) in the system of equations 

(24) and neglecting the infinitesimals of second and higher order 

terms, we get 
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W here, 
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The condition of constraint (25) is now given as 
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2 2 2

2

1
X Y Z


+ +                      (32) 

 

VI. SIMULATIONS OF THEEQUATIONS OF MOTION 

OF THE TWO CABLE CONNECTED SATELLITES 

SYSTEM 

 

 Numerical solutions of the set of differential equations 

(30) of the cable-connected satellites system are not possible. 

Therefore, we are interested for simulations of equations (30). 

Here we first of all establish Jacobean integral of motion of the 

system and there after we study about the equilibrium positions 

of motion of the system concerned.  

 

Jacobean integral of the system: 

For simplicity, we consider only the first two equations of 

(30) as 
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A
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− − = −
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


+ = −
 

( ) 21 2 2
5

1 2

3
cos sin

B B k
v Y f

m m R
   

 
+ −  − − − 
   

                                                                                  (33) 

 The condition of constraint (32) is now given as 

 

2 2
2

1
X Y


+ 

                                                      

 (34) 

 We shall discuss the case of circular orbit of center  of 

mass of the system. We put 0e= , 1=  and 0=   in 

equations (33) and write 

 

( )1 2 2
5

1 2

12
" 2 ' 3 cos .cos cosa

B B K
X Y X X A i X

m m R
   

 
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and 

 

( )1 2 2
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3
" 2 ' .cos sina
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m m R
   

 
+ = + −  − − − 

 
                                                                                      

(35) 

 

with the condition of constraint 

 

 
2 2 1X Y+ 

                                                     
 (36) 

 

For circular orbit, 

 

 
2 2 1X Y+ = ; whence ' ' 0XX YY+ =

             
(37) 

 

The system of two satellites is allowed to pass through the 

shadow beam during its motion. Let us assume that 2 is the 

angle between the axis of the cylindrical shadow beam and the 

line joining the center of the earth and the end point of the orbit 

of the center of mass within the earth's shadow, considering the 

positive direction towards the motion of the system. The system 

starts to be influenced by the solar pressure when it makes an 

angle 2  with the axis of the shadow beam and remains under 

the influence of solar pressure till it makes an 

angle( )22 − with the axis of the cylindrical shadow beam. 

Thereafter, the system will enter the shadow beam and the effect 

of solar pressure will come to an end. 

 

Next, the small secular and long periodic effects of solar 

pressure together with the effects of earth's shadow on the 

system may be analyzed by averaging the periodic terms in (35) 

with respect to  from 2  to( )22 −  for a period when the 

system is under the influence of the sun rays directly i.e. 

1= and from 2−  to 2+  for a period when the system 

passes through the shadow beam i.e. 0= . 

Thus, after averaging the periodic terms, (35) may be written 

as  

 

1 2 2 2
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and 

 

1 2 2 2
5
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cos sin sin 3
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m m R
  




  
+ = + − − − 

 
                                                               (38) 

Where 

3
1 2

1 2

m mp
mm



 +

=  
                                 

(39) 

 

These equations do not contain the time explicitly, Therefore, 

Jacobean integral of the motion exists. 

 

Multiplying the first and second equations of (38) by X' and 

Y' respectively, adding them and then integrating the final 

equation, we get the Jacobian integral in the form 
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 2 2 2' ' 3 2 cosX Y X AX i+ − = −  

( )1 2
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1 2

2
cos sin cos sin

B B
X Y
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
 

+ −  + 
 

 

( )2 22
5

3
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K
X Y fY h

R

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 (40) 

 

The surface of zero velocity can be obtained in the form  

 

2 1 2

1 2

2
3 2 cos .

B B
X AX i
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( )2cos sin cos sinX Y   +  

( )2 22
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K
X Y fY h
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                                                                                  (41) 

       

   

h=Constant of Integration called Jacobean constant. 

 

It is, therefore, concluded that satellite 1m  moves inside the 

boundary of different curves of zero velocity, represented by 

(41) for different values of Jacobean constanth. 

 

Equilibrium positions of the system: 

A set of equations (38) for motion of the system in the 

rotating frame of reference has been obtained. It is assumed that 

the system is moving with the effective constraint and the 

connecting cable of the two satellites always remains tight. 

The equilibrium positions of motion of the system are given 

by the constant values of the co-ordinates in the rotating frame 

of reference. Let us take 

 

 0X X=  and  0Y Y=                                         (42) 

0X  and 0Y  are constant, give the equilibrium positions. 

Therefore, we get 

 

 0' ' 0X X= =           ;    0" " 0X X= =  

 

           0' ' 0Y Y= =           ; 0" " 0Y Y= =      (43) 

 

       Putting (42) and (43) in the set of equations (38), we get 
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                                                                                  (44) 

 

Actually, it is very difficult to obtain the solution of (44). 

Hence, we are compelled to make our approaches with certain 

limitations. In addition to this, we are interested only in the case 

of the maximum effect of the earth's shadow on motion of the 

system. 

 

In the further investigation, we put 0=  and 0= as 

because 1 2

1 2

B B
m m
 

− 
 

 or 2  cannot be zero. Clearly equations 

(44) become 
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and 

  

 
2

0 05

3 K
Y f Y

R
 = +                                   (45) 

 

All the two equations of (45) are independent of each other.  

With the help of the two equations of (45), the equilibrium 

position is obtained as. 
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                                                                                  (46) 

 

VII.   RESULT AND DISCUSSION 

Aim of the present paper is to obtain equations of motion of a 

system of two cable connected satellites under the influence of 

several perturbative forces like shadow of the earth, solar 

radiation pressure, oblateness of the earth, earth’s magnetic field 

and air resistance. The cable connecting the two satellites is 

light, flexible, non -   conducting and inelastic in nature. The 

satellites are considered as charged material particles. As the 

body of the satellites is made up of metal, the satellites cut 

magnetic lines of force of the earth. According to Lorentz force 

charges get developed on the two satellites. But magnitude of 

the charges is very small. Thus, electrostatic interaction between 

the satellites is not taken into account. Motion of the system is 
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studied relative to the center of mass. Cable connected satellites 

system in the space is a physical and mathematical modeling of 

the real space problems, such as space vehicle and astronaut 

floating in space, two or multi sectional satellites system 

connected by a cable, manned space capsule attached to its 

booster by a cable and spinners to provide artificial gravity for  

the astronaut and finally two satellites at the same time of 

rendezvous in order to transport a man successfully to an 

orbiting station. Many space configurations of inter connected 

satellites system have been proposed and analyzed like two 

satellites are connected by a rod i.e. dumbbell satellite, two or 

more satellites connected by a tether. While investigating the 

relative motion of the system of two cable connected satellites, it 

is assumed that the particles are subjected to impacts of 

absolutely inelastic in nature, when the cable tightened up. 

Shadow of the earth is supposed to be cylindrical in nature and 

the system is allowed to pass through the shadow beam. Many 

authors like Beletsky and Novikova (1969), Beletsky and Levin 

(1993),Celled and Sidorenko (2008), Kurpa et al. (2000,2006) 

have discussed many important applications of the system of 

two cable connected satellites. 

Our problem is general in the sense that for the first time, we 

investigated the influence of several perturbative forces like 

shadow of the earth, solar radiation pressure, oblateness of the 

earth, earth’s magnetic field and air resistance on the system of 

two cable-connected satellites. Many classical results of two 

cable-connected satellites system may be verified from our 

generalized result (30). For example, works of Sinha and Singh 

(1987,1988), Khan and Goel (2011), Celled and Sidorenko 

(2008), Kumar and Srivastava (2006), Kumar and Kumar 

(2016), Kumar (2018) etc. 

 

CONCLUSION 

Equations (30) are a set of non-linear, non-homogeneous and 

non-autonomous differential equations of motion of a system of 

two cable-connected artificial satellites under the influence of 

shadow of the earth, solar radiation pressure, oblateness of the 

earth, earth’s magnetic field and air resistance. These equations 

have wide applications in solving problems of stability of a 

cable-connected satellites system in orbit. Applying simulations 

and using the equations (30), we can easily calculate Jacobean 

integral of motion of the system concerned either in circular or 

elliptical orbit. In fact, Jacobean integral is potential energy of 

the system. With the help of Jacobean integral, we can easily 

study about the condition regarding constrained motion of the 

system. We can apply simulations and the set of equations of 

motion (30) to study Non -resonant oscillation, resonant 

oscillation and Para metric resonant oscillation of a cable - 

connected satellites system under the influence of several 

perturbative forces 
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