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Abstract—In this manuscript, we introduce a noval procedure
for generating distributions based on the sine trigonometric
function, and we called this procedure as the Sine Exponentiated
Transformation (SET). The SET procedure is then specialized
on exponential distribution and a new distribution, namely,
Sine Exponentiated Exponential (SEE) distribution is acquired.
The introduced model is quite flexible in terms of density
and hazard rate functions. Besides flexibility, several other
well known properites including moments, moment generating
function, mean residual life, mean waiting time, stress strength
parameter and order statistics has been highlighted. Simulation
study has been carried out to assess the performance of all the
estimators. Lastly the applicability of the distribution is discussed
on three different real data sets.

Index Terms—Sine exponentiated transformation; Exponential
distribution; Hazard rate function; Moments; maximum likeli-
hood estimation.

I. INTRODUCTION

The statistical literature incorporate a plethora of probability
models for modeling different real life random phenomenon
in various areas such as insurance, actuarial, demography,
economics, medical sciences, finance and engineering. Since
there is no particular distribution sufficient for modeling every
phenomenon, a number of new models with a high degree of
flexibility is increasing year by year. So the researchers have
switched their attention to set up new family of distributions
and proposed a variety of new families of distributions so
that real life data can be better assessed and investigated
in different applied areas. Among them Marshall and Olkin
(1997) proposed a new method for generating family of dis-
tributions. Eugene et al. (2002) proposed the beta generalized
method. Mudholkar and Srivastava (1993) proposed a method
to introduce an extra parameter to the Weibull distribution.
Aldeni et al. (2017) developed a new family of distribution
arising from the inverse cumulative distribution function of the
generalized lambda distribution. Alzaatreh et al. (2014) acted

on the family of T-normal distributions.Alzaatreh et al. (2016)
suggested the family of generalized Cauchy distributions.
Mahdavi and Kundu (2017) focused on the Alpha Power
Transformation (APT) family of distributions. Cordeiro et al.
(2017) put forward the half Cauchy family of distributions.
Ijaz et al. (2020) acted on the Gull Alpha Power Weibull
distribution. Nassar et al. (2018) suggested a method based
on the idea of Alpha power transformation. Recently, Ijaz
et al. (2021) proposed class of New Alpha Power Transformed
family (NAPT) of distributions. They employed exponential
distribution in NAPT family and derived a new distribution
called New Alpha Power Transformed exponential (NAPTE)
distribution. In fact, the statistical literature has a scarcity of
distributions which are based on trigonometric functions, most
of them are based on algebraic functions. Among trigono-
metric distribution functions, let us point out Mahmood and
Chesneau (2019) who introduced a new sine-G family of
distributions. Chesneau et al. (2019) proposed a new class of
probability distributions via cosine and sine functions. Ches-
neau and Jamal (2019) introduced the Sine Kumaraswamy-
G Family of distributions. Recently, Al-Babtain et al. (2020)
proposed the Sine Topp-Leone-G family of distributions.
Based on the motivations above, we introduce a noval family
of distributions which is based on trigonomentric function that
brings more flexibility to the given family. Then we give a
comprehensive account of its general mathematical properties,
such as shapes of probability density and hazard rate functions,
useful expansions, moments and moment generating function.
After providing a comprehensive treatment of its mathematical
properties, we focus our attention on a special member of this
family, defined with the exponential distribution as baseline.
It is named as the SEE distribution.
The rest of the paper is sorted as follows: In section 2 a novel
family of probability distributions called SET has been focused
and some well known properties of this family have been
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discussed. In section 3, SEE distribution has been examined,
its structural properties have been discussed. In section 4,
Maximum likelihood estimators of unknown parameter as well
as simulation study have been carried out. In secton 5, three
real life data sets have been analyzed to demonstrate the
efficacy of the proposed model. Finally, the paper is concluded
in section 6.

II. SINE EXPONENTIATED TRASFORMATION (SET)AND ITS
PROPERTIES

Let g(y) and G(y) be the probability density function (pdf)
and cumulative distribution function (cdf) of any continuous
random variable Y, respectively. Then the cdf F (y) of the
SET family of distributions is defined as

F (y) = G(y) sin
(π

2
Gα(y)

)
; y ∈ R, α ≥ 0 (1)

the corresponding pdf is

f(y) = g(y)
(απ

2
Gα(y) cos(

π

2
Gα(y)) + sin(

π

2
Gα(y))

)
;

y ∈ R, α ≥ 0.

The survival function S(y) for SET family of distributions
is given by

S(y) = 1−G(y) sin
(π

2
Gα(y)

)
; y ∈ R, α ≥ 0.

The hazard rate function, λ(y) is given by

λ(y) =
g(y)

(
απ
2 G

α(y) cos(π2G
α(y)) + sin(π2G

α(y))
)

1−G(y) sin(π2G
α(y))

;

y ∈ R, α ≥ 0.

The following series representations will be used throughout
the paper.

(1− x)n =

n∑
k=0

(
n

k

)
(−1)kxk ; |x| < 1 (2)

sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
; x ∈ R (3)

cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!
; x ∈ R (4)

ex =

∞∑
k=0

xk

k!
; x ∈ R (5)

(α)x =

∞∑
k=0

(logα)k

k!
xk (6)

using (2), (3) and (4) the power series expansion for the cdf
and pdf of SET family of distributions in terms survial function
S(y) are respectively given by

F (y) =

∞∑
j=0

α(2j+1)+1∑
k=0

ajk S
k(y)

where

ajk =
(−1)j+k(π2 )2j+1

(2j + 1)!

(
α(2j + 1) + 1

k

)
and

f(y) = g(y)

∞∑
j=0

α(2j+1)∑
j=0

ajl S
k(y)

where

ajl =
(−1)j+k(π2 )2j+1

(2j)!

(
α(2j + 1)

l

)
(α+

1

2j + 1
)

III. SINE EXPONENTIATED EXPONENTIAL (SEE)
DISTRIBUTION AND ITS PROPERTIES

Let Y be a random variable follows the exponential
distribution with cdf G(y) = 1 − e−θy; y, θ > 0 then the
cdf of the SEE distribution is defined as

F (y) = (1− e−θy) sin
(π

2
(1− e−θy)α

)
; y ∈ R+, α ≥ 0,

the corresponding pdf is

f(y) = θe−θy
(απ

2
(1− e−θy)α cos(

π

2
(1− e−θy)α)

+ sin(
π

2
(1− e−θy)α)

)
; y ∈ R+, α ≥ 0
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Fig. 1. Plots of the SEE density for different values of α and θ.
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The survival and hazard rate functions are, respectively ,
given by

S(y) = 1− (1− e−θy) sin
(π

2
(1− e−θy)α

)
;

y ∈ R+, α ≥ 0

and

λ(y) =
θe−θy

(
απ
2 (1− e−θy)α cos(π2 (1− e−θy)α) + sin(π2 (1− e−θy)α)

)
1− (1− e−θy) sin(π2 (1− e−θy)α)

;

y ∈ R+
, α ≥ 0
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Fig. 2. Plots of the SEE hazard rate function for different values of α and θ.

A. Moments

The rth moment of the SEE distribution is given by

E(Y r) =

∞∫
0

yrf(y)dy

=
1

θ

∞∑
j=0

(−1)jr!(π2 )2j+1

(2j)!

[
α

α∑
i=0

2αj∑
k=0

(−1)i+k
(
α
i

)(
2αj
k

)
(i+ k)r

+

α(2j+1)∑
l=0

(−1)l
(
α(2j+1)

l

)
(2j + 1)lr



B. Moment generating function

The moment generating function of SEE distribution is
given by

MY (t) =

∞∫
0

etyf(y)dy

=
1

θ

∞∑
j=0

∞∑
r=0

(−1)jtr(π
2

)2j+1

(2j)!

[
α

α∑
i=0

2αj∑
k=0

(−1)i+k
(
α
i

)(
2αj
k

)
(i+ k)r

+

α(2j+1)∑
l=0

(−1)l
(
α(2j+1)

l

)
(2j + 1)lr

 ; t < θ

C. Mean residual life and mean waiting time

Suppose that Y is a continuous random variable with
survivial function S(y) then, the mean residual life function,
say µ(t) , is defined by

µ(t) =
1

S(t)

E(t)−
t∫

0

yf(y)dy

− t
The mean residual life of SEE distribution is given by

µ(t) =
1

θ

∞∑
j=0

(−1)j(π
2

)2j+1

(2j)!

[
α

α∑
i=0

2αj∑
k=0

(−1)i+k
(
α
i

)(
2αj
k

)
(i+ k)

A

+

α(2j+1)∑
l=0

(−1)l
(
α(2j+1)

l

)
(2j + 1)l

B

− t

where

A =
(

1− e−θ(i+k)t(θt+ 1)
)

and

B =
(
1− e−θlt(θt+ 1)

)
The mean waiting time of Y , say µ̄(t), is given by

µ̄(t) = t− 1

F (t)

t∫
0

yf(y)dy

µ̄(t) = t− 1

F (t)

{
1

θ

∞∑
j=0

(−1)j(π
2

)2j+1

(2j)!

[
α

α∑
i=0

2αj∑
k=0

(−1)i+k
(
α
i

)(
2αj
k

)
(i+ k)

A

+

α(2j+1)∑
l=0

(−1)l
(
α(2j+1)

l

)
(2j + 1)l

B


where

A =
(

1− e−θ(i+k)t(θt+ 1)
)

and

B =
(
1− e−θlt(θt+ 1)

)
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D. Order statistics

Here, we focus on the order statistics related to the
sine exponentiated transformation family of distributions. Let
Y1, Y2, ..., Yn be a random sample of size n, and let Yi:n denote
the ith order statistic, then the pdf of Yi:n, say fi:n(y) is given
by

fi:n(y) =
n!

(i− 1)!(n− i)!
F (y)i−1f(y)(1− F (y))n−i (7)

By using (2), (3), (4), (5) and (6) we get the ith order statistic
of SEE distribution as

fi:n(y) =
n!

(i− 1)!(n− i)!
θe−θy (8)

×
∞∑
k=0

(−1)k(π2 )2k+1

(2k)!
[amp + bq]crs (9)

where

amp = α

α∑
m=0

2kα∑
p=0

(−1)m+p

(
α

m

)(
2kα

p

)
e−θ(m+p)y

bq =

α(2k+1)∑
q=0

(−1)q
(
α(2k+1)

q

)
e−θqy

(2k + 1)

and

crs =

n−i∑
r=0

r∑
s=0

(−1)r+s
(n− i

r

)(r
s

)
e−λsy

(
sin
(π
2
(1− e−θy)α

))r

E. Stress strength parameter

Suppose Y1 and Y2 be independent strength and stress
random variables respectively, where Y1 ∼ SEE(α1, θ) and
Y2 ∼ SEE(α2, θ), then the stress strength parameter P(Y1 >
Y2), say R, is defined as

R =

∞∫
−∞

f1(y)F2(y)dy,

and is given by

R =θ

 ∞∑
j=0

(−1)j(π2 )2j+1

(2j)!

2
α2∑
m=0

α2(2j+1)∑
n=0

(−1)m+n

(
α2

m

)

×
(
α2(2j + 1)

n

)
[C +D]

where

C = α1

α1∑
i=0

2α1j∑
k=0

(−1)i+k
(
α1

i

)(
2α1j
k

)
θ(i+ k +m+ n+ 1)

and

D =

α1(2j+1)∑
l=0

(−1)l
(
α1(2j+1)

l

)
θ(l +m+ n+ 1)

TABLE I
AVERAGE VALUES OF MLES THEIR CORRESPONDING MSES AND BIAS

(N=50).

Parameter MLE MSE Bias
α θ α̂ θ̂ α̂ θ̂ α̂ θ̂

0.5 0.5 0.57134 0.52205 0.08633 0.00652 0.07134 0.02205
1 0.55059 1.03528 0.08402 0.02709 0.05059 0.03528

1.5 0.54335 1.55186 0.07599 0.06009 0.04335 0.05186
2 0.57550 2.08942 0.09867 0.09950 0.07550 0.08942
3 0.55956 3.10780 0.08314 0.23320 0.05956 0.10780

1 0.5 1.10631 0.51406 0.14425 0.00513 0.10631 0.01406
1 1.09188 1.03370 0.14567 0.02435 0.09188 0.03370

1.5 1.07865 1.54974 0.14357 0.05318 0.07865 0.04974
2 1.10072 2.07756 0.12611 0.09244 0.10072 0.07756
3 1.10125 3.08374 0.17917 0.22898 0.10124 0.08374

1.5 0.5 1.62299 0.51058 0.29192 0.00464 0.12299 0.01058
1 1.68653 1.04376 0.29055 0.02256 0.18653 0.04376

1.5 1.63695 1.54223 0.25616 0.04723 0.13694 0.04223
2 1.63100 2.07223 0.24397 0.08516 0.13100 0.07223
3 1.61684 3.08658 0.27250 0.20119 0.11684 0.08658

2 0.5 2.19155 0.51765 0.45862 0.00582 0.19155 0.01765
1 2.20198 1.02842 0.44930 0.02257 0.20198 0.02842

1.5 2.17571 1.54804 0.48812 0.04791 0.17571 0.04804
2 2.16670 2.06759 0.43514 0.09086 0.16670 0.06758
3 2.14301 3.05925 0.42633 0.17063 0.14301 0.05925

3 0.5 3.21627 0.51368 0.97494 0.00511 0.21627 0.01368
1 3.34516 1.03478 1.05264 0.01954 0.34516 0.03478

1.5 3.20841 1.53981 0.89062 0.04742 0.20841 0.03981
2 3.20939 2.04707 0.85746 0.07370 0.20939 0.04707
3 3.27796 3.08750 1.16273 0.18555 0.27796 0.08750

TABLE II
AVERAGE VALUES OF MLES THEIR CORRESPONDING MSES AND BIAS

(N=100).

Parameter MLE MSE Bias
α θ α̂ θ̂ α̂ θ̂ α̂ θ̂

0.5 0.5 0.51387 0.50797 0.03745 0.00312 0.01387 0.00797
1 0.53577 1.02252 0.03693 0.01068 0.03577 0.02252

1.5 0.51881 1.53341 0.03299 0.02613 0.01881 0.03341
2 0.51376 2.03174 0.03739 0.05001 0.01376 0.03174
3 0.52029 3.06187 0.03304 0.10124 0.02029 0.06187

1 0.5 1.04931 0.50710 0.06118 0.00274 0.04931 0.00710
1 1.03798 1.01716 0.06440 0.01006 0.03798 0.01716

1.5 1.03728 1.52403 0.05765 0.02356 0.03728 0.02403
2 1.03812 2.02885 0.06048 0.04616 0.03812 0.02885
3 1.04487 3.03736 0.07504 0.09693 0.04487 0.03736

1.5 0.5 1.58102 0.50790 0.11685 0.00215 0.08102 0.00790
1 1.57586 1.02099 0.11108 0.00957 0.07586 0.02099

1.5 1.56230 1.52513 0.10804 0.02354 0.06230 0.02513
2 1.53990 2.02573 0.11185 0.04467 0.03990 0.02573
3 1.55084 3.06152 0.09967 0.09573 0.05084 0.06152

2 0.5 2.06847 0.50904 0.16163 0.00244 0.06847 0.00904
1 2.09184 1.01562 0.17683 0.00998 0.09184 0.01562

1.5 2.07191 1.51987 0.17464 0.02352 0.07191 0.01987
2 2.07935 2.03059 0.18402 0.03948 0.07935 0.03059
3 2.08810 3.04104 0.17481 0.08929 0.08810 0.04104

3 0.5 3.15415 0.50689 0.40534 0.00243 0.15415 0.00689
1 3.11076 1.01398 0.35868 0.00872 0.11076 0.01398

1.5 3.11446 1.51956 0.38501 0.01971 0.11446 0.01956
2 3.13329 2.03309 0.40414 0.03598 0.13329 0.03309
3 3.14568 3.05367 0.41051 0.08683 0.14568 0.05367
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TABLE III
MLES (STANDARD ERRORS IN PARENTHESES), K-S STATISTIC, AND

P-VALUES FOR THE DATA SET I.

Estimates Statistics
Model α̂ θ̂ θ̂ K-S p-value

WE
3.13216 0.01807 0.80693 0.06202 0.83650

(0.13308) (0.01229) (0.13308)

MW
0.10124 0.00100 0.02597 0.17369 0.00479

(0.01012) (0.00703) (0.01287)

SEE
1.21399 0.12592 - 0.03715 0.99910

(0.26669) (0.01236)

APE
21.16923 0.18307 - 0.05285 0.94270

(14.16432) (0.0.01974)

NAPTE
2.32487 0.07530 - 0.04024 0.99690

(1.75530) (0.01570)

W
0.11171 0.90032 - 0.05745 0.89610

(0.00925) (0.11114)

G
2.00884 0.20338 - 0.04252 0.99360

(0.26389) (0.03032)

E
0.10124 - - 0.17301 0.00502

(0.01012)

SE
0.05722 - - 0.15587 0.01552

(0.00534)

TABLE IV
−2l(θ̂), AIC, AICC, BIC FOR THE DATA SET I.

Model −2l(θ̂) AIC AICC BIC

WE 641.6886 647.6886 647.9386 655.5410
MW 658.2426 664.2426 664.4926 672.0581
SEE 634.2848 638.2848 638.4085 643.4952
APE 638.0736 642.0736 642.1973 647.2840
NAPTE 634.8204 638.8204 638.9441 644.0307
W 637.4892 641.4893 641.6130 446.6996
G 634.6002 638.6002 638.7240 643.8106
E 658.0418 660.0418 660.0826 662.6469
SE 653.0729 655.0729 655.1137 657.6780
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Fig. 3. (i) The relative histogram and the fitted SEE distribution. (ii) The
fitted SEE survival function and empirical survival function for data set I.

IV. STATISTICAL INFERENCE

A. Maximum likelihood estimators
Let y1, y2, ..., yn be a random sample from SEE(α, θ)

distribution with parameter vector Θ=(α, θ) then the logarithm

TABLE V
MLES (STANDARD ERRORS IN PARENTHESES), K-S STATISTIC, AND

P-VALUES FOR THE DATA SET II.

Estimates Statistics
Model α̂ θ̂ λ̂ K-S p-value

WE
3.95810 0.01796 0.85819 0.07458 0.47470

(1.21408) (0.00466) (0.05928)

MW
0.10518 0.00100 1.16895 0.08387 0.32890

(0.05587) (0.03494) (0.98153)

SEE
0.43482 0.11365 - 0.06377 0.67520

(0.15363) (0.01031)

APE
1.17446 0.11134 - 0.07932 0.39630

(0.15363) (0.01031)

NAPTE
3.39395 0.12091 - 0.07250 0.51140

(0.51098) (0.01359)

W
0.09438 1.04576 - 0.07000 0.55720

(0.01912) (0.06742)

G
1.17255 0.12520 - 0.07329 0.49750

(0.00043)

E
0.10676 - - 0.08463 0.31830

(0.00943)

SE
0.05974 - - 0.07126 0.53390

(0.00498)

TABLE VI
−2l(θ̂), AIC, AICC, BIC FOR THE DATA SET II.

Model −2l(θ̂) AIC AICC BIC

WE 838.7996 845.7996 845.9931 854.3557
MW 828.6628 834.6628 834.8564 843.2189
SEE 824.0739 828.0739 828.1699 833.7780
APE 828.6364 832.6364 832.7324 838.3404
NAPTE 826.1586 830.1586 830.2546 835.8627
W 828.1748 832.1747 832.2707 837.8788
G 826.7356 826.7356 830.8316 836.4396
E 828.6838 830.6838 830.7155 833.5358
SE 828.6652 830.6652 830.6969 833.5172
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Fig. 4. (i) The relative histogram and the fitted SEE distribution. (ii) The
fitted SEE survival function and empirical survival function for data set II.

of the likelihood function can be expressed as

l(Θ) = − nlogθ − θ

n∑
i=1

yi −
n∑
i=1

log
(απ

2
(1 − e−θyi)α

×cos(π
2

(1 − e−θyi)α + sin(
π

2
(1 − e−θyi)α)

)
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TABLE VII
MLES (STANDARD ERRORS IN PARENTHESES), K-S STATISTIC, AND

P-VALUES FOR THE DATA SET III.

Estimates Statistics
Model α̂ θ̂ λ̂ K-S p-value

WE
0.00881 0.94623 1.48174 0.13208 0.22180

(0.00405) (0.97387) (1.57994)

MW
0.32687 0.01191 0.00100 0.09427 0.63000

(0.04119) (0.29582) 0.08371

SEE
65.75017 1.37387 - 0.08654 0.73290

(25.39974) (0.13296)

APE
6.68161 1.04561 - 0.18082 0.03250

(1.67772) (4.81109)

NAPTE
5.56317 1.04092 - 0.16544 0.06358

(1.18632) (4.70195)

W
4.85846 0.00337 - 0.11335 0.39320

(0.24854) (0.00105)

G
25.59175 8.36522 - 0.08980 0.70120
(0.26389) (0.03032)

E
0.32687 - - 0.48600 2.378e-13

(0.04118)

SE
0.00881 - - 0.48152 4.103e-13

(0.02182)

TABLE VIII
−2l(θ̂), AIC, AICC, BIC FOR THE DATA SET III.

Model −2l(θ̂) AIC AICC BIC

WE 138.4807 144.4807 144.8875 150.9102
MW 115.6353 119.6353 119.8353 123.9216
SEE 113.0204 117.0204 117.4272 121.3067
APE 147.2311 151.2311 151.4311 155.5173
NAPTE 144.4528 148.4528 148.6528 152.7391
W 124.9071 128.9071 129.1071 133.1934
G 113.7575 117.7575 118.1643 118.1643
E 266.8915 268.8915 268.9571 271.0347
SE 259.0475 261.0475 261.4543 263.1907

The maximum likelihood estimators of Θ can be obtained by
solving the non linear normal equations ∂l

∂Θ (Θ) = 0. These
equations cannot be solved analytically, so in order to get
MLEs of parameters we use R software.

B. Simulation study

In this subsection, a Monte Carlo simulation study has
been carried out by using R software to attest the consistency
of the MLEs. This study is replicated 500 times each with
sample sizes (n=50, n=100) with different values of parameters
α = (0.5, 1, 1.5, 3), θ = (0.5, 1, 1.5, 2, 3) were generated
from SEE. In each case, the average values of MLEs and the
corresponding empirical mean squared errors (MSEs) and bias
were attained. The simulation results are presented in table I
and table II. In particular, with repect to the theory, we observe
that the MSEs and biases decrease with increasing sample size.
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Fig. 5. (i) The relative histogram and the fitted SEE distribution. (ii) The
fitted SEE survival function and empirical survival function for data set III.
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Fig. 6. Q-Q plot for the SEE distribution for data set I and data set II,
respectively.
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Fig. 7. P-P plot for the SEE distribution for data set I and data set II,
respectively.

V. APPLICATION

To test the applicability of the SEE distribution, three real
data sets were analyzed. The data set I corresponds to the
waiting time (in minutes) of 100 bank customers. The data
were taken from Ghitany et al. (2008) and also reported
by Bhat et al. (2018).

The data set II corresponds to the remission time in months
of 128 bladder cancer patients. The data were taken from
Aldeni et al. (2017) and was recently reported by Ijaz et al.
(2021). The data set III which is related to engineering field
consists of 63 observations of the gauge length of 10mm taken
from Kundu and Raqab (2009).

For comparison purpose, we have fitted the proposed
SEE with several other models, namely Weibull exponential
(WE) Oguntunde et al. (2015), modified Weibull (MW) Sarhan
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Fig. 8. P-P and Q-Q plots for the SEE distribution for data set III.

and Zaindin (2009), alpha power exponential (APE) Mahdavi
and Kundu (2017), noval alpha power transformed exponential
(NAPTE) Ijaz et al. (2021), Weibull (W), gamma (G),
exponential (E) and sine exponential (SE) Kumar et al. (2015)
distributions, their corresponding density functions for y > 0
are as follows

WE f(y) = αβθ(1− e−θy)β−1eθβy−α(eθy−1)β

MW f(y) = (α+ θβyβ−1)e−αy−θy
β

APE f(y) =
logα

α− 1
θe−θyα1−e−θy

NAPTE f(y) = θlog(α)
αlog(1−e

−θy)

eθy − 1

SE f(y) =
π

2
θe−θycos

(π
2

(1− e−θy)
)

From Table III, Table IV, Table V, Table VI, Table VII
and Table VIII it is apparent that SEE distribution has lowest
−2l(θ̂), AIC, AICC, BIC, K-S statistic and highest p-value
among all the other competitive models. Hence the introduced
model offers the better fit than the other models for the given
data sets.

The relative histogram and the fitted SEE distribution of
the data set I, II and III are displayed in Figures 3(i), 4(i)
and 5(i) respectively. The plots of the fitted SEE survival
function and empirical survival function of the data set I,
II and III are displayed in Figures 3(ii), 4(ii) and 5(ii)
respectively. The Q-Q plots for data set I and II are displayed
in Figure 6(i) and 6(ii) respectively. Also, the P-P plots
for data set I and II are displayed in Figure 7(i) and 7(ii)
respectively, for data set III the P-P and Q-Q plots are
displayed in figure 8 that permits us to make a comparison
between the empirical distribution of the data with the
SEE distribution. These graphical goodness of fit measures
undoubtedly support the results given in Tables III, Table IV,
Table V, Table VI, Table VII and Table VIII

VI. CONCLUSION

A noval family of distributions called SET has been intro-
duced. SET family has been specialized on the exponential dis-
tribution and a new two-parameter SEE distribution has been

obtained. Various mathematical properties of SEE distribution
were highlighted. It has been noticed that the two-parameter
SEE distribution has more flexibility in terms of the hazard rate
and density functions. The potentiality of the proposed model
is compared with other existing models by using goodness of
fit measures. The model has been fitted to three different real
data sets, the figures display that the proposed model provides
reasonable fit for all the three data sets in comparison to all
other competitive models.

REFERENCES

Al-Babtain, A. A., Elbatal, I., Chesneau, C., and Elgarhy, M.
(2020). Sine topp-leone-g family of distributions: Theory
and applications. Open Physics, 18(1):574–593.

Aldeni, M., Lee, C., and Famoye, F. (2017). Families of
distributions arising from the quantile of generalized lambda
distribution. Journal of Statistical Distributions and Appli-
cations, 4(1):1–18.

Alzaatreh, A., Lee, C., and Famoye, F. (2014). T-normal
family of distributions: A new approach to generalize the
normal distribution. Journal of Statistical Distributions and
Applications, 1(1):1–18.

Alzaatreh, A., Lee, C., Famoye, F., and Ghosh, I. (2016).
The generalized cauchy family of distributions with applica-
tions. Journal of Statistical Distributions and Applications,
3(1):1–16.

Bhat, A., Mudasir, S., and Ahmad, S. (2018). Mixture of
exponential and weighted exponential distribution: Proper-
ties and applications. Int. J. Sci. Res. in Mathematical and
Statistical Sciences Vol, 5:6.

Chesneau, C., Bakouch, H. S., and Hussain, T. (2019). A
new class of probability distributions via cosine and sine
functions with applications. Communications in Statistics-
Simulation and Computation, 48(8):2287–2300.

Chesneau, C. and Jamal, F. (2019). The sine kumaraswamy-g
family of distributions.

Cordeiro, G. M., Alizadeh, M., Ramires, T. G., and Ortega,
E. M. (2017). The generalized odd half-cauchy family of
distributions: properties and applications. Communications
in Statistics-Theory and Methods, 46(11):5685–5705.

Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal dis-
tribution and its applications. Communications in Statistics-
Theory and methods, 31(4):497–512.

Ghitany, M. E., Atieh, B., and Nadarajah, S. (2008). Lindley
distribution and its application. Mathematics and computers
in simulation, 78(4):493–506.

Ijaz, M., Asim, S. M., Farooq, M., Khan, S. A., and Man-
zoor, S. (2020). A gull alpha power weibull distribution
with applications to real and simulated data. PloS one,
15(6):e0233080.

Ijaz, M., Mashwani, W. K., Göktaş, A., and Unvan, Y. A.
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