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Abstract: In this paper, focused to study Algebraic
Structure and some Homomorphism functions On Set of
Pythagorean TriplesPy = {(x,y,2)eZ3: x* + y* = z%}and

Set of Reciprocal Pythagorean triples RPy =

3.1 1 _ 1 . .
{(x,y, z)eZ ) + = Z—Z}under the binary operation of
usual multiplications. For some
Py = (X1,Y1,21)€Py, Py = (X2,¥2,2,)€Ppwith

{(b’ﬂ’z = x1%2|, X1Y2 + X2Y1,2122)  [Lemma A]}
(x1X2,¥122 + Y221, ¥1Y2 + Z12;) [Lemma B]

Also we are proven Every Pythagorean Triple (x, y, z) is

P1-P2 =

having corresponding Reciprocal Pythagorean Triple in the
form of (xz,yz, xy) and vice versa. Apply this corollary
to define Algebraic Structure on Set of Reciprocal

Also
operations of usual multiplication on Set of Sequence of

Pythagorean Triples. applied above binary
Fibonacci type numbers to generate some subsets of Set
of Pythagorean triples. Also focused to study some
Homomorphism functions on Set of Pythagorean triples
and Set of Reciprocal Pythagorean Triples. Also, we are
proven some Properties of Trigonometric Ratio’s and

Compound Angles for Reciprocal Pythagorean Triples.

Index Terms: Algebraic Structure, Binary Operation,
Homomorphism functions, Pythagorean theorem, Reciprocal
Pythagorean theorem.

DOI: 10.37398/JSR.2021.650913

Il INTRODUCTION
The solutions to the quadratic Diophantine equation
a’+b?=c? are given by Pythagorean theorem and

corresponding Reciprocal Pythagorean Triples (a, b, h)is aiz +

1 1. b .. . .
== with ¢ = % ,here h’ is a altitude, which are can be used

in the computation of the area of a triangle.

P, P, Uy1y2 = x1221, %1y
+ X2)1,212,)
(5,12,13) (4,3,5) (16,63,65)
(7,24,25) (3,4,5) (75,100,125)
(4,3,5) (8,15,17) (13,84,85)
(4,3,5) (4,3,5) (8,24,25)
(3,4,5) (8,15,17) (36,77,85)
(1,0,1) (8,15,17) (8,15,17)
(1,0,1) (1,0,1) (1,0,1)
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Figure 1. Pythagorean & Reciprocal Pythagorean Theorem
In this paper we are focused to study Algebraic Structure and
some Homomorphism Functions defined on Set of Pythagorean
triples and Set of Reciprocal Pythagorean triples.

A Algebraic Structure of Set of Pythagorean Triples

1). Lemma A: Introduce to define the binary operation of Usual
multiplication °.’

On Set of Pythagorean triples is P;. P, = (|y1y. — X1%21, X1y, +
X2Y1,2122) FOr some Py = (xy,¥1,21)€Pr, P, = (X3,2,22)€Pr.
Proof: Consider (y;v, — x1%,)% + (17, + %371)? = (x1x,)% +
1y2)? + (ery2)? + (1) = [xf + yfllxd +y3] = z{73.

It follows that (|y,y, — x1%3], x1¥2 + X34, 212,) IS becomes
to a Pythagorean triple. Hence the binary operation of usual
multiplication is well defined on Set of Pythagorean triples. Some
examples are represented in below table

Table 1: verification of Lemma A, By choosing some P, ePr, P,ePr

2). Lemma B: Introduce to define another binary operation of
usual multiplication ‘.” On Set of Pythagorean triples is P;. P, =
(x1X2, Y122 + Y221, Y12 + 2122)

Proof: Consider (y1y; + 2122)% = (122 + ¥221)* = (1Y2)% +
(2122)% = (1122)% — (221)% = Z3[2§ — y}] = yilz} —yf] =
[zf — yP1[25 — yi] = xfx3.

It follows that (x;x3)% 4+ (12, +¥,21)% = (1Y, + 212;)?
implies that (xyx5, V12, + V221, V1Y + 212,)iS  becomes to
Pythagorean triple. Some examples are represented in below
table.

Table 2: verification of Lemma B , By choosing some P; €Py, P,ePr

Py =(x,y1,21)  Pp = (x2,52,22) (xX1%2, y122
+ Y221, Y12
+2,2,)
(5,12,13) (4,3,5) (20,99,101)
(7,24,25) (3,4,5) (21,220,221)
(4,3,5) (8,15,17) (32,126,130)
(4,3,5) (4,3,5) (16,30,34)
(3,4,5) (8,15,17) (24,143,145)
(1,0,1) (8,15,17) (8,15,17)
(1,0,1) (1,0,1) (1,0,1)

Hence the binary operation of usual multiplication‘.” Is well
defined on Set of Pythagorean triples. i.e. for some P; =

(X1, ¥1,21)€Pr, Py = (X3,¥32,2,)€Pr with P1-P2 =
{(bﬁ}’z — X1 %], X1V, + X2V1,212;) [Lemma A]} Apply little
(X1%2, Y122 + Y221, Y1Y2 + 712;) [ Lemma B]

bit of calculations of Lemma A and Lemma B, we can verify
easily Commutative axiom (p,.p, = p,.p;) and Associative
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Axioms (p;.p2).ps = p1.(p,.ps)are satisfies the elements of
Set of Pythagorean TriplesP, with existence of Identity element
(1,0,1). It proves that Set of Pythagorean triples can form as
commutative Monoid. Now we can go to introduce to study some
Injective homomorphism functions on Set of Pythagorean triples

1. SOME HOMOMORPHISM FUNCTIONS ON SET OF
PYTHAGOREAN TRIPLES

Case 1: @, is an injective homomorphism mapping with respect
to Lemma B, defined as @, : {(2x — 1)/xeN} - Z3(P;).Foreach

2_ 2

odd integer x,8, (x) = (x,x - Lx ;1 .

Proof: From Reference [1], for each odd integer X
2_ 2

,(x,le,xz“)is becomes to Pythagorean triple. Consider

2-1 x1%+1 21 xp2%+1

0o (1), By ()= (1, =, L) (1,222,221,

Now we can apply Lemma B, obtain that

2_ 2 .
(xlxz,(xlxz) 1,(x1x22) +1) = @,(x,.x,). It follows that @, (x) is
becomes to Homomaorphism function under the binary operation
of Lemma B. Some examples are represented in below table.

Table 3: @,(x) is an injective homomorphism for each odd integerx; ,x,

x x Bo(x1)  Bolxy)  Po(x1).0o(x By(xq.%7)
(1,0,  (3,4,5) (3,4,5) (3,4,5)
1)

(3,4, (3,4,5) (9,40,41  (9,40,41)
5) )

(3,4, (5121 (15,112, (151121
5) 3) 113) 13)
(3,4, (7,242 (21,220,  (21,220,2
5) 5) 221) 21)
(5,12, (7,242 (35612,  (35,612,6
13) 5) 613) 13)

Case 2: @,(x) is injective Homomorphism mapping with respect
to Lemma B, defined as @, : {(2x)/xeN} - Z3(P;). For even

integer x,0,(x) = (x (g)z -1, (g)z + 1).

Proof: Clearly (2,0,2)€ @, implies that @, (x)is non empty set,
also from Reference [1], each even integer X, (x (f)2 -1, (f)2 + 1)
is become to Pythagorean triple. Consider

08002 - 1.2) 1) - 1.2) )

2 2
Now we can apply Lemma B, obtain <x1x2, 2 (("11%2) - 1) ,2 (% +

1)> =20, (xl'xz). It follows that @, (x) is become to

2
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Homomorphism function for each even integer x, under above

x x Qq(x1) De(x2) 20,(x1. 25 De(x1). B (xz
/2)
(4,3,5) (4,3,5) (16,30,34) (16,30,34)
(6,8,10 (4,3,5) (24,70,74) (24,70,74)
)
(6,8,10 (6,8,10) (36,160,1 (36,160,1
) 64) 64)
(8,15,1 (6,8,10) (48,286,2 (48,286,2
7) 90) 90)
(4,3,5) (8,15,17 (32,126,1 (32,126,1
) 30) 30)

binary operation of Lemma B.
Table 4: @, : {(2x)/xeN} - Z3(Pr)choose even positive integers x;, x,

Case3: 0,(x;.x5) = 0,(x1).0o(x3) = Dp(x1).0.(x,) , s
injective homomorphism function, under the binary operation [B].

0 ()-8, (e)=(x1, (2) -1, (2) +
1) . (xz,xzzz_l,xzz;l) Apply Lemma B, obtains (xlxz, ("gﬁ)z _

1, ("1"2)2 + 1) =@, (x; .x3)

2

Proof: Consider

Table 5: @,:0,(x;.%3) = 0,(x1).0,(x,) for
x1 and odd integer x,

even integer

X %, 0.(x) Do) Be(x1).-Do(x2) Bp(x7.25)
(4,3,5) (3,4,5) (12,35,37) (12,35,
37)
(6,8,10) (3,4,5) (18,80,82) (18,80,
82)
(6,8,10) (512,13 (30,2242 (30,22
) 26) 4,226)
(8,1517  (7,24,25  (56,783,7 (56,78
) ) 85) 3,785)
(4,3,5) (7,2425 (28,1951 (281951
) 97) 97)

B)Corollary 1: Introduce to define some subset of Pythagorean
Triples with using sequence of Fibonacci numbers as follows.
Let @:2% - Z%(Pr) with  @O(Fy, Fryr) = (Fpa(F +
Fpi1), E,(2Fp 1 + E),F2 + (E, + F,..1)?) is becomes to
subset of Set of Pythagorean Triple also this subset becomes to
semi group under the binary operation(xy, y1,21). (x5, V5, 23) =

(X1%X2, Y122 + Y221, V1Y + z12,)for all (x1,¥1,21) €
0, (XZ, Y2, Zz) EP
Proof: Fibonacci Numbers{1,1,2,3,5,8,13,21 ........} Satisfies

following Recurrence Relation F, = F,_; + F,_, forn =2,
with Fy = 1,F; = 1. Also Introduce to define subset of Set Of
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Pythagorean  Triple is  (2(Fy1(Fy + Fpy1) , B, (2F4q +
Fn)'F1%+1 + (Fn + Fn+1)2)-
plqgl|X Y= z= Reciprocal
=(p® +¢%) 2pq(p? 2pq(p®—q?) | Pythagorean
®*-4» +4%) Triples
2|1 15 20 12 (15,20,12)
3|1 80 60 48 (80,60,48)
312 65 156 60 (65.156,60)
411 255 136 120 (255,136,120)
412 240 320 192 (240,320,192)
413 175 600 168 (175,600,168)
5]1 624 260 240 (624,260,240)

Table 6: Subset of Set of Pythagorean Triples for sequence of Fibonacci
Numbers

(Z(Fn+1(Fn + Fn+1) :Fn(ZFn+1 +
Fn)' F1%+1 + (Fn + Fn+1)2)

1 (4,3,5)

2 (12,5,13)

3 (30,16,34)

5 (80,39,89)

8 (208,105,233)

g W N BEP-

Let Q:Zz _)ZS(PT) with Q)(Fn:Fn+1)= (Z(Fn+1(Fn+
Fui1)  FyQFyiq + By, F2ey + (Fy + Foi)?). Apply Little Bit
of Calculation by replacing n values , @ (F,, F,.,1)is becomes to
Algebraic Structure of Semi Group (Satisfies Closure and
Associative axiom)under the binary operation
(x1, Y1, 21)- (X2, Y2, 22) = (X1X3, Y125 + Y221, Y1Y2 + 212, )or
all (xq,y1,21) € 0, (x2,¥2,2;) € 0.

Corollary 2: Introduce to define some subset of Pythagorean
Triples with using sequence of Pell numbers as follows

Letg:Z? » Z3(Py) with  @(Py, Pyy1) = (PPuyy Prys-
PZ2,PZ,, + B?).is becomes to subset of Set of Pythagorean Triple
also this subset becomes to semi group under the binary
operation(xy, y1,z1). (X2, ¥2, 22) = (x1X2, Y122 + Y221, 1Y +
zyzp)for all (xy,y1,21) € 0, (x2,¥2,2,) €D

Proof: Pell Numbers{0,1,2,5,12,29 ... ..., } Satisfies following
Recurrence Relation B, = 2P,_; + P,_, forn = 2, with Py =
0, P, = 1. Also introduce to define subset of Set of Pythagorean
Triple using pill numbers is((2P, P41 ,P2.1- PZ,P%,, + P?).

Table 7: Subset of Set of Pythagorean Triples for sequence of Pell
Numbers

P, Poss (2PyPrs1 P21~ P2P2ys + P?)
0 1 (0,1,1)
1 2 (4,3,5)
2 5 (20,21,29)
5 12 (120,119,169)
12 29 (696,697,985)

Let @ ZZ - Z3(PT) Withq’(Pn'Pn+1) = (ZPnPn+1 1P7%+1'
P2,P2,, + P?).Apply Little Bit of Calculation by replacing n
values , @(B,, P,4+1)is become to Algebraic Structure of Semi
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Group (Satisfies Closure and Associative axiom)under the binary
operation  (xq,¥1,21)- (x2,¥2,22) = (X1X2, Y122 + Y221, Y12 +
z,z,)forall (x1,y1,2,) € @, (x3,¥,,2,) € D.

Reciprocal x(x2+ 1)
Pythagorean 2
yihag ((xZ -1DE*+1) \

m x| X Y; A

Triple 2
x(x?2-1)

2
11 3] 15 20 12 (15,20,12) (15,20,12)
2| 5| 65 | 156 60 (65, 156, 60) (65, 156, 60)

(7| 600 168 (175, 600, 168) (175, 600, 168)

419 | %° | 1640 | 360

5/ 1] ¢ | 3660 | 660
1

Il. ALGEBRAIC STRUCTURE AND SOME HOMOMORPHIC
FUNCTIONS ON SET OF RECIPROCAL PYTHAGOREAN TRIPLES

(369,1640, 360)
(671,3660, 660)

(369, 1640, 360)
(671, 3660, 660)

First, we can introduce some subsets of Set of Reciprocal
; _ 3.1 01 1

Pythagorean Triples RP; = {(x Y, Z)EZ =t = Zz}Wlth

using following Theorems.

Theorem 1: For any two integers p, q (with p > q), (X, Y, 2) =

((@* + ¢ ®* — g%, 2pq(P* + q°), 2pq(p* — q*)) is becomes
to the Reciprocal Pythagorean Triple
1

Proof: Consider Reciprocal Pythagorean Theorem xiz + % ==
X X

. X X age -
It will follow (; + ;) (; - ;) = 1. For some positive integers p,

(x1,¥1,7) €RPp (x12,¥171,%, 1) €Pp
(20, 15, 12) (240,180,300) = [(240)? + (180)% = (300)?]
(60, 80, 48) (2880,3840,4800) =[(2880)2 + (3880)2 =
(4800)%]
(136, 255, 120) (16320,30600,34680) = [(16320)2 + (30600)2 =
(34680)?]
(260, 624, 240) (62400,149760,162240) = [62400% + (149760)2 =
(162240)%]
(444, 1295, 420) | (186480,543900,574980) = [186480% +
(543900)% = (574980)%]
. X X 7 X X q . .. .
g (with p > q), assume - +; =Y 2 5 Which is implies
Z_pyd Z—X:E—g,foIIowsthath:z(3+3), 2x =
K4 q 14 y q p q 14

y (s - %). If we can choose the value of x= (p% + ¢%)(p? — ¢?)

then z = 2pq(p? — q?) , y = 2pq(p? + q?). It is Simple and
effective Method to find Integer Solution for Reciprocal

Pythagorean Theorem. Clearly —+— = —————
yt a?o ea €0 e1 Clearly x2+y2 ((p2+q2)(p2_q2))2+

1
Cra I - a7 Some examples are represented
in below table.
Table 8: Reciprocal Pythagorean Triples For Some Positive Integers P,
Q With (P>Q)
Theorem 2:

Rpt, (X): {(x(x22+1) ’(X2_1)4(x2+1)’x(x22_1)
is as subset of Set of Reciprocal Pythagorean Tr|p|e
Proof: Clearly s+ 1 _

( - )) ((XZ 1)(x2+1)) (X(Xz 1))

4 2

:x is an odd integer)}
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For generalization, odd integer numbers are denoted by 2 m + 1

forsomem=1,2, 3,..... It follows that Reciprocal Pythagorean

Triples are represented by Rpt,(m)=
{((2m+1)((2m+1)2+1) ((em+1)*-1) (2m+1)((2m+1)2—1)) m =
2 ’ 4 ’ 2 e

{(Cm+1D@m?+2m + 1) ,4m* +
=123, ...}

Table 8: Some examples are represented in below table

1,23, ...} Rpto(m)=
8m® + 6m? + 2m, (2m + 1)(2m? + 2m)): m

m | x Xy Y; Z, | Reciprocal

Pythagorean

()

2 |4 |20 15 12 | (20,15,12) | (20,15, 12)

3 |6 |60 80 | 48 | (60,80,48) | (60,80, 48)

4 |8 136 | 255 | 12 | (136,255, (136, 255, 120)

0 120)

5 | 10 | 260 | 624 | 20 | (260,624, (260, 624, 240)
240)

6 | 12 | 444 | 1295 | 420 | (444,295, (444, 1295, 420)
420)

Table 9: Some examples are represented in below table

Theorem 3: Rpt.(x)= {(x ((2)2 + 1))((92 - 1) ((2)2 +

2
1) , X <(§) — 1) :x is an even number greater than Z}is

asubset of Set of Reciprocal Pythagorean Triple.

Proof: Clearly—— + ! = L

M) (@) )

generalization even integer numbers are denoted by 2 m for some

m= 2, 3, ... It follows that Reciprocal Pythagorean Triples are
represented by  Rpt(x)=  {(2m (m?+ 1)), ((m)* -
1),2m((m)2 - 1):m =23, ........ }.

Corollary 3: If (x4,¥4,2,) €RPr then (x,24,¥124,X1Y1) €Pp and
vice versa.

Proof: Let (x4,¥4,2,) €eRPy implies that -1

x )2 o T @
Consider (x124)* + (y121)*= (21)?[x:* + y1%]= (x1y1)%.

It follows that f(xq,y;,2,) €RPrthen (X,24,¥1Z1,%X1Y1) €Pp
and vice versa. Table 10: Some examples are represented in below
table.

Lemma C: For some P! = (X{,y1,%) €RP,Pi =
(X4,¥2,2,)€eRPy, define corresponding Binary Operation on RPp
with using of Corollary 3 and Lemma A is

PP} = (X1,¥1,21). (X2, Y2, Z2) (121, Y121, X1Y1)- (X222, V22, X2Y2)
:(|Y1YZZ1ZZ — X1X221 25| (X1 X2Y1Y2), (X1Y221Z2 +

V1X22122) (X1X2¥1Y2), (V1Y2Z1Z2 — X1X22122) (X1Y221Z7 + Y1X22122))
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Corollary  4:  (%121,¥1%1,%1V1) €Pr, (X225,Y222,%X,¥,) €Pr Then

(X121, Y171, X1Y1)- (X222, Y272, X2¥2) = (X171X372,Y1721X2Y2 +

Y2Z2X1Y1,Y1Z1Y2%2 + X1¥1X2Y2)

Proof: Similar Proof of Lemma B and corollary 3, above Binary

Operation is well defined on Set of Pythagorean triples.

Lemma D: For some P=(x;,y;,7)€RP,P} =

(x3,V2,2,)€RPr, From Corollary 3, Corollary 4, we can go to

define corresponding Binary Operation on RPy is

PLPS = (x4, ¥1,21). (X2, Y2, 22) = (X121, Y121, X11)- (X222, Y222, X2¥2)

= ((X1Z1X222)(Y1Z1Y222 + X1y1%2¥2), (V121X2Y2 +

V2Z2X1Y1) (V121Y2Z2 + X1Y1X2Y2), (X121X225) (V1Z1X2Y2 + Y222X1Y1))

Now we can apply little bit of calculations of above Binary

Operations of Lemma C and Lemma Don Set of Reciprocal

Pythagorean Triples to form as Algebraic Structure of Semi

Group (Satisfies closure axiom and Associative Axiom).

Homomorphism Functions of Set Of Reciprocal Pythagorean

Triples

Case 4:Rpt, is an injective homomorphism mapping defined as
Rpt,: {2x + 1} = Z3(RPp)withRpt, (x)=

{(X(XZH) '(Xz—l)(x2+1)'x(xz—1)) :xis odd} under the binary

2 4 2
Operation of Lemma D.

Proof: Clearly (1,0 ,1)€ Rpt,(x) . So it is non empty and Also

FromTheoreml,(X(X2+1) ’(x2—1)4(x2+1),x(x22—1):) X is an odd

integer is an element of Set of Reciprocal Pythagorean Triple. we
can apply Little Bit of Calculation Rpt,(x)with corollary 3,
corollary 4 and Lemma D, it becomes to Homomorphism
Injective mapping. i. e Rpt, (x1). Rpty(X2) = Rpty (X7.X5).

Case 5:Rpt.(x) is an injective defined as

Rpt.: {(2x)/xeN} - Z*(RPy) with
o0 {{(x (1)) (&)~ )(©) + )46 -

1) :X is an even }}under the binary operationof Lemma D.

mapping

Proof: Clearly (2 ,0 ,2)€ Rpt.(x) and, ((X (G)Z + 1))(@2 -

1) ((5)2+ 1),x((§)2 - 1):Xis even integer) is a element of Set of

Reciprocal Pythagorean we can apply Little Bit of Calculation
Rpte(x) is becomes to Homomorphism  mappin:g
Rpt.(X1). Rpte(x;) = Rpte(X;.X,) with using of .From Corollary
3, Corollary 4 and Lemma D.

Case 6:Rptis aninjective mapping defined as Rpt:z? —
Z3(RP;) with
Rpt(p, Q)={(®* + ¢ ®* - ), 2pq(p* +4*),2pq(p* — ¢*)}

Proof: Clearly (2 ,0,2)€ Rpt(p, q). So itis non empty and Also
from Theorem 1, for some integers p, q (p>q) , ((p? + q%)(p? —
a?), 2pq(p? + q),2pq(p®> — q%)) is a element of Set of
Reciprocal Pythagorean Triple and from Corollary 2, Corollary 3
, we can apply Little Bit of Calculation Rpt(p, q) is becomes to
Homomorphism.  That s Rpt(p1,q1)- Rpt(ps, 92)=

Rpt(p;p2, 9192)-
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V. SOME INHERENT PROPERTIES OF RECIPROCAL
PYTHAGOREAN TRIPLES

Theorem 4: If ( x, y, z) are Reciprocal Pythagorean Triples
Then % is Perfect Square.
Proof: we know that x= (p% + q%)(p? — q°),y = 2pq(p? + q2),
z=2pq(p* — q*) -( |
. yz _ (2pa(p?+a*))(2pa(p®-q?
Consider - = PP

some values of p, g, we are proven
%is Perfect Square.
Table 11: Now we can verify above result by taking some

)):(qu)z. Hence for

examples.

Reciprocal Pythagorean Triples yz

X
(15,20,12) 20-12_ 4
(80,60,48) 608*048 —36=6?
(65,156,60) 156260 _ 44 =122
(255,136,120) 2 e
(240,320,192) 002 956 =162
(175,600,168) 600+168 . _ .42

175
260 = 240

(624,260,240) = =100 = 107

Theorem 5: If (X, y, z) are Reciprocal Pythagorean Triples Then
Y*2 is Perfect Square if and only if q divides p.

y-z

Proof: we know that x= (p? + q%)(p? — q2).y = 2pq(p? + g3), z

= 2pq(p® — g%).

Tablel12: Some examples are represented in below table.

Reciprocal y+z
Pythagorean y—1z
Triples
(15,20,12) 20412 _ 4 _ 92
20-12
(80,60,48) Z‘;j: =9=32
(65156,60) | 22122 =2 25 = 1,52
(255,136,120) 122222 =16=42
(240,320,192) % =4=22
(175,600,168) | 600+168 _ 4 4997778
600-168
(624,260,240) | 2604240 _5p _ 2
260—240
e vtz 2pa(p?+a®)+2pa(p®-a®) _ 4pia_ (p\?
Consider 2= Zpalpradzpaor—ad) - (q) . Hence for

+7Z . .
some values of p, g, we are proven E is Perfect Square if and

only if g divides p. Now we can verify above result by taking
some examples. Some Trigonometric Functions Relations for
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Reciprocal Pythagorean Triples. Now we can go to discuss about
Trigonometric functions for Reciprocal Pythagorean Triples (a, b
, h) are defined as follows.

e 1

ab~ h

Without loss of generality of Pythagorean and Reciprocal
Pythagorean theorems (a? + b? = c? and alz + biz = hizwith c= %
). Define Trigonometric functions for Reciprocal Pythagorean

triples as follows  singpr(0,)= 2 singpr(0,)= g, cosgpr(07)=

h h b .
o Cosrpr(82)=~, Tangpr(6,)= -, Tanger(6,)= % with 6, + 6,=

YL

Above definitions are Satisfies following axioms of
Trigonometric ratios and compound Angles for Reciprocal
Pythagorean Triples.

Lemma E: Sin%gpr(8;) + Sin%gpr(0,)=1
. n\? , [h\?
Proof: Consider Sin?gpr(8;) + Sin?gp7(8,) = (;) + (g) =

We can easily verify the result by taking some Reciprocal

Pythagorean Triple.

Lemma F: Sin?gpr(8;) + cos?gpr(0,)=1
. h 2 h 2
Proof: Consider Sin?gpr(8;) + cos?gpr(8;) = (;) +(g) -
1 1 1
h? (5 +5) =h? x5 =1
We can easily verify the result by taking some reciprocal
Pythagorean Triple.

Lemma G: Sin?gpr(0,) + cos?gpr(0,)=1

2 2
Proof: Consider Sin?gpr(8,) + cos?gpr(8,) = (%) +(§) -
h? (aiz +biz) = h? « hiz = 1. We can easily verify the result by

taking some reciprocal Pythagorean Triple.
Lemma H: COSZRPT(el) + COSZRPT(ez): 1

2 2
Proof: Consider Cos?gpr(8;) + cos?gpr(8,) = (%) + G) =
h? (aiz +biz) = h? « hiz = 1. We can easily verify the result by

taking some reciprocal Triple.
Lemma I: Cos?gpr(0;) + sin®gpr(0,)=1

2 2
Proof: Consider Cos?gpr(0;) + sin’gpr(0,) = (%) +(§) =
h? (ai2 +bi2) = h? « hiz = 1. We can easily verify the result by

taking some reciprocal Triple.
Similarly, we can define Reciprocal Trigonometric functions for
Reciprocal Triples defined as follows.

b
Cosecgpr(01)= %: Secrpr(81)= 1, COtRPT(el):%! Cosecgpr(62)=
b

b
o Secrpr(62)= i , Cotgpr(62)= 3
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Lemma J: Cosec?gpr(8;) — cot?gpr(8;)=1

2 2
Proof: Consider Cosec?gpr(6;) — cot?gpr(8;) = (%) - (%) -
1 1

2 2
a2 ((H) - (g) ) =a%x aiz = 1. We can easily verify the result by

taking some reciprocal Triple.
Lemma K CoseCZRPT(ez) - COtZRPT(ez): 1

2 2
Proof: Consider Cosec?gpr(0,) — cot?gpr(0,) = (E) - (E) -
b2 (1)2 (1)2 —b2elo1 W i ity th It
5) = () ) =b% x5 = 1. We can easily verify the resu

by taking some reciprocal Triple.
Lemma L: Sec?gpr(0,) — tan?gpr(0,)=1

2 2

Proof: Consider Sec?gpr(8;) — Tan?gpr(8;) = (E) _(g) =
b2 ((2) = () ) =bp2et=1w ily verify the result
(H) —(5) =b? x> = 1. We can easily verify the resu

by taking some reciprocal Triple.
Lemma M: SeCZRpT(ez) - taanpT(GZ): 1

2 2
Proof: Consider Sec?gpr(8,) — tanZgpr(6,) = (E) _(E) =

2 2
a2 <(%) - (%) ) =a%x aiz =1, We can easily verify the result by

taking some reciprocal Triple.
Lemma N: singpr(6; +6,)=1
Proof:singpr(0; + 0,)=singp(0;)cosgpr(6;) +

. h h h h 1 1
cosgpr(81)singpr(8;) == x =+t =h? (5 + )
= h? « hiz = 1. It will clearly indicate that 6, + 8, = g

Lemma O: COSRPT(Gl + 92): 0
Proof: COSRPT(Gl + GZ)ZCOSRPT(Gl)COSRpT(GZ) -

singpr(81)singpr(82)= * - ——*=0.
It will clearly indicate that 6; + 6, = g

In this way to can go to prove all properties of Trigonometric
Functions for Reciprocal Pythagorean Triples also applicable for
Reciprocal Pythagorean Triples. It is very useful to find Area of
Triangle, Orthocenter of a triangle.

CONCLUSION

In this paper, focused to study Algebraic Structure and some
Homomorphism functions on Set of Pythagorean TriplesP; =

{(x,y,z)eZ3:x? + y? = z?} and Set of Reciprocal Pythagorean

. 1 1 1 -
Triples. RPp = {(x,y,z)€Z3:X—2+}7=Z—}. With respect to

2
following binary operation of Lemma A& Lemma B. For some
Py = (X4,¥1,21)€Pr, P, = (X3, ¥2,2,)€Ppwith P1-P2 =
{(|Y1YZ = X1Xz|, X1Y2 + X2¥1,2173) - [A]} Also If (X, Yy,
(X1X2, Y122 + Y221, ¥1Y2 + 2472) .. [B]
z)e RPr Then (xz,y z, xy) e Py and vice versa. It follows, Also
we are introduce to study under the above binary operation,
following Homomorphism functions on Reciprocal Pythagorean
2 2_ 2 2_
triples are Rpto(x)= {(x(x +1) (x2-1)(x%+1) x(x2-1)

> " T )}x is an odd
o< (1)) () (€ + 1) +(0) -

1)} X is an even number greater than 2 and Rpt(p,q)=

{(p* + ) (p* — g%, 2pq(p® +

’
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q?), 2pq(p?q?): for some integers p > q}. Also Introduce to
study, some other inherent properties of Reciprocal Pythagorean
Triples.
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