DISTRIBUTION OF DIFFERENT COURSES AND CREDITS IN VARIOUS SEMESTERS

<table>
<thead>
<tr>
<th>Semester-I</th>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM101</td>
<td>Transmission Genetics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM102</td>
<td>Molecular Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM103</td>
<td>Basic Human Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM104</td>
<td>Cytogenetics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM105</td>
<td>Biochemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM106</td>
<td>Cell Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM107</td>
<td>Lab work based on courses MGM101 & MGM102</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM108</td>
<td>Lab work based on courses MGM103 & MGM104</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM109</td>
<td>Lab work based on courses MGM105 & MGM106</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester-II</th>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM201</td>
<td>DNA Technology & Genetic Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM202</td>
<td>Bioinformatics and Biotechniques</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM203</td>
<td>Model Genetic Systems</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM204</td>
<td>Genomic Instability and Cancer</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM205</td>
<td>Human Genome</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM206</td>
<td>Reproductive Genetics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM207</td>
<td>Lab work based on courses MGM201 & MGM202</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM208</td>
<td>Lab work based on courses MGM203 & MGM204</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM209</td>
<td>SWAYAM Course</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester-III</th>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM301</td>
<td>Human Molecular Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM302</td>
<td>Clinical Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM303</td>
<td>Developmental Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM304</td>
<td>Immunogenetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM305</td>
<td>Population & Evolutionary Genetics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM306</td>
<td>Lab work based on courses MGM301 & MGM302</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM307</td>
<td>Lab work based on courses MGM303 & MGM304</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM308</td>
<td>SWAYAM Course</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester-IV</th>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM401</td>
<td>Neurogenetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGM402</td>
<td>Genetic Counseling and Intellectual Property Rights</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM403</td>
<td>Lab work based on course MGM401</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MGM404</td>
<td>Seminar & Formulation of Research Project</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM405</td>
<td>Comprehensive Viva-voce</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MGM406</td>
<td>Dissertation</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Grand Total 80
SEMESTER - I

MGM101: Transmission Genetics

Credits: 2
Lecture hours

1. Introduction to Genetics 1
2. Mendelism
 2.1. Mendel and his experiments 5
 2.2. Law of segregation
 2.3. Law of independent assortment
 2.4. Application of laws of probability (product rule, sum rule)
 2.5. Chromosomal basis of segregation and independent assortment
3. Chi-square test and its application in analysis of genetic data 1
4. Extensions of Mendelism 8
 4.1. Allelic variation and gene function- Dominance relationships, basis of dominant and recessive mutations
 4.2. Multiple allelism, allelic series
 4.3. Testing gene mutations for allelism: complementation test, intragenic complementation
 4.4. Visible, sterile and lethal mutations
 4.5. Genotype to phenotype: effect of the environment on phenotype development- Penetrance and expressivity, phenocopy
 4.6. Gene interactions and modifying genes
 4.7. Pleiotropy
5. Sex-linked inheritance, Linkage and crossing over 4
 5.1. Genetic recombination and construction of genetic maps in Drosophila
 5.2. Interference and coincidence
 5.3. Cytological demonstration of crossing over in Drosophila
6. Inheritance of quantitative traits 4
 6.1. Continuous and discontinuous variation
 6.2. Polygenic inheritance
 6.3. Genetic variance, heritability (narrow sense and broad sense)
7. Cytoplasmic inheritance, maternal effects, inheritance due to parasites and symbionts 3

Recommended Books

Suggested Reading
MGM102: Molecular Genetics

Credits: 3

Lecture hours

1. Properties and evolution of genetic material, flow of genetic information 2
2. Organization of viral, bacterial genomes and Eukaryotic genome 5
3. Replication: Prokaryotic and Eukaryotic 7
 3.1. DNA polymerases
 3.2. Replicons, origin and termination
 3.3. Replisome
 3.4. Genes controlling replication
4. Transcription 7
 4.1. Prokaryotic RNA polymerase, sigma factors, initiation and termination
 4.2. Eukaryotic RNA polymerases and their promoters
 4.3. Processing of transcripts
5. Translation 5
 5.1. General mechanism
 5.2. Role of rRNA in translation
6. Regulation of gene expression 10
 6.1. Regulation of transcription initiation
 6.1.1. Operon and regulon
 6.1.2. Positive and negative regulation
 6.1.3. Enhancers and promoters
 6.1.4. Transcription factors: types, DNA binding motifs
 6.2. Regulation by attenuation and anti-termination
 6.3. Post transcriptional regulation
 6.3.1. Alternative splicing
 6.3.2. Transport and targeting of RNA
 6.3.3. Post-transcriptional gene silencing
 6.4. Translational control and targeting of proteins
 6.5. Mechanism of steroid hormone and stress induced gene expressions
7. Mutation: Types and detection 3

Recommended Books
2. Krebs JE, Goldstein ES and Kilpatrick ST. Lewin's Gene XII, Jones and Bartlett

Suggested Reading
2. Dale & Schartz (2003). From genes to Genome. Wiley & Sons
MGM103: Basic Human Genetics

Credits: 3

<table>
<thead>
<tr>
<th>Lecture hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1. History of Human Genetics

2. Pedigrees- gathering family history, pedigree symbols, construction of pedigrees, presentation of molecular genetic data in pedigrees

3. Monogenic traits

3.1. Autosomal inheritance-dominant, recessive

3.2. Sex-linked inheritance

3.3. Sex-limited and sex-influenced traits

3.4. Mitochondrial inheritance

3.5. MIM number

3.6. Complications to the basic pedigree patterns- nonpenetrance, variable expressivity, pleiotropy, late onset, dominance problems, anticipation, genetic heterogeneity, genomic imprinting and uniparentaldisomy, spontaneous mutations, mosaicism and chimerism, male lethality, X-inactivation

3.7. Risk assessment; application of Bayes’ theorem

3.8. Allele frequency in population

3.9. Consanguinity and its effects

4. Complex traits

4.1. Approaches to analysis of complex traits- ‘Nature -nurture’ concept, role of Family and shared environment, monozygotic and dizygotic twins and adoption studies

4.2. Polygenic inheritance of continuous (quantitative) traits, normal growth charts, Dystrophy

4.3. Polygenic inheritance of discontinuous (dichotomous) traits- threshold model, liability and recurrence risk

4.4. Genetic susceptibility in multifactorial disorders (alcoholism, diabetes mellitus, obesity)

4.5. Estimation of genetic components of multifactorial traits: empiric risk, heritability, coefficient of relationship

5. Human cytogenetics

5.1. Techniques in human chromosome analysis

5.2. Human karyotype: banding, nomenclature of banding

5.3. Pathology of human chromosomes

5.4. Nomenclature of aberrant karyotypes

5.5. Common syndromes due to numerical chromosome changes

5.6. Common syndromes due to structural alterations (translocations, duplications, deletions, microdeletion, fragile sites)

5.7. Common chromosome abnormalities in cancer

5.8. Genetics of fetal wastage

6. Pharmacogenetics and ecogenetics

Recommended Books

Suggested Reading

MGM104: Cytogenetics

Credits: 2

Lecture hours

1. Chromatin structure
 1.1. Histones, DNA
 1.2. Nucleosome and higher level organization.
2. Chromosome organization
 2.1. Metaphase chromosome: centromere and kinetochore, telomere and its maintenance; Holocentric chromosomes and supernumerary chromosomes
 2.2. Chromosomal domains (matrix, loop domains) and their functional significance
 2.3. Heterochromatin and euchromatin, position effect variegation, boundary elements
3. Functional states of chromatin and alterations in chromatin organization
4. Structural and functional organization of interphase nucleus
5. Giant chromosomes
 5.1. Polytenic chromosomes
 5.2. Lampbrush chromosomes.
6. Mitosis
 6.1. Mitotic spindle and arrangement of chromosomes on equator
 6.2. Regulation of exit from metaphase
 6.3. Chromosome movement at anaphase
7. Meiosis
 7.1. Overview of the process
 7.2. Meiosis specific cellular changes
 7.3. Genetic control of meiosis (example: yeast)
8. Dosage compensation in Caenorhabditis, Drosophila and mammals

Recommended Books

Suggested Reading
MGM105: Biochemistry
Credits: 3

Lecture hours: 10

1. Nucleic Acids:
 1.1 Nature of genetic material, evidences of DNA as the genetic material
 1.2 Structure & constitution of nucleic acids (purines, pyrimidines, nucleoside)
 1.3 Features of double helix DNA, structure and types and composition of RNA &DNA, unusual structures
 1.4 Nucleic acid chemistry: non enzymatic transformation and methylation
 1.5 Biological role of DNA & RNA, central dogma of molecular biology.

2. Enzymes
 2.1 General characteristics of enzymes, Activation energy, Coupled reactions, Active site and its importance
 2.2 Enzyme Classification and nomenclature of enzymes, and cofactors
 2.3 Kinetic studies: Significance; Rapid Equilibrium and Steady State approach, Michaelis-Menten’s equations, derivation of Michaelis-Menten equation, Significance of Km, Catalytic efficiency and turnover number, Effect of pH and temperature.
 2.4 Methods of plotting enzyme kinetics data: Lineweaver-Burk, Advantages and disadvantages; Integrated form of the Henry-Michaelis-Menten equation; Effect of pH and temperature.
 2.5 Enzyme Inhibition, Models and types of inhibition; Kinetics and diagnostic plots
 2.6 Regulatory enzymes; Multisite and allosteric enzymes; Models and examples
 2.7 Enzyme Regulation and control of enzyme activity: reversible covalent modification, irreversible covalent modification

3. Hormones
 3.1 Characteristics
 3.2 Mechanism of action of peptide hormones
 3.3 Mechanism of action of steroid hormones and gene expression
 3.4 Hormonal regulation of fuel metabolism

4. Vitamins
 4.1 Structure
 4.2 Dietary sources, biochemical functions, requirements of water- and lipid-soluble vitamins (vitamin B complex, C and A, D, E & K vitamins)
 4.3 Recommended dietary allowances, nutritive value, Requirement of vitamins under different physiological states- infancy, childhood, adolescence, pregnancy, lactation and ageing
 4.4 Deficiency diseases

5. Bioenergetics
 5.1 Second law of thermodynamics Gibbs free energy, Concept of free energy, standard free energy, determination of ΔG for a reaction, endergonic & exergonic reactions. Relationship between equilibrium constant and standard free energy change, biological standard state & standard free energy change in coupled reactions
 5.2 High energy compounds– introduction, phosphate group transfer, free energy of hydrolysis of ATP and sugar phosphates along with reasons for high ΔG energy change
 5.3 Oxidative phosphorylation: Biological oxidation-reduction reactions
MGM106: Cell Biology

<table>
<thead>
<tr>
<th>Credits: 3</th>
<th>Lecture hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plasma Membrane: organization and dynamics transport across membrane; mechanisms of endocytosis and exocytosis</td>
<td>4</td>
</tr>
<tr>
<td>2. Endomembrane system</td>
<td></td>
</tr>
<tr>
<td>2.1. General organization of protein transport within and outside the cell</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Protein sorting and secretion</td>
<td></td>
</tr>
<tr>
<td>2.3. Mechanism of intracellular digestion</td>
<td></td>
</tr>
<tr>
<td>3. Cytoskeleton</td>
<td></td>
</tr>
<tr>
<td>3.1. Microfilaments: Structural organization, cell motility and cell shape</td>
<td>4</td>
</tr>
<tr>
<td>3.2. Microtubule: Structural and functional organization, cilia, flagella, centriole</td>
<td></td>
</tr>
<tr>
<td>3.3. Intermediate filaments</td>
<td></td>
</tr>
<tr>
<td>4. Mitochondria</td>
<td>3</td>
</tr>
<tr>
<td>4.1. Ultrastructure</td>
<td></td>
</tr>
<tr>
<td>4.2. Chemiosmotic theory and respiratory chain complexes</td>
<td></td>
</tr>
<tr>
<td>5. Structure and function of peroxisome</td>
<td>1</td>
</tr>
<tr>
<td>6. Nucleolus and biosynthesis of ribosome</td>
<td>2</td>
</tr>
<tr>
<td>7. Cell cycle and its regulation</td>
<td>4</td>
</tr>
<tr>
<td>8. Cell-Cell Interaction</td>
<td>6</td>
</tr>
<tr>
<td>8.1. Cell adhesion molecules</td>
<td></td>
</tr>
<tr>
<td>8.2. Cellular junctions</td>
<td></td>
</tr>
<tr>
<td>8.3. Extracellular matrix</td>
<td></td>
</tr>
<tr>
<td>9. Signal transduction</td>
<td>8</td>
</tr>
<tr>
<td>9.1. Intracellular receptor and cell surface receptors</td>
<td></td>
</tr>
<tr>
<td>9.2. Signalling via G-protein linked receptors (PKA, PKC, CaM kinase)</td>
<td></td>
</tr>
<tr>
<td>9.3. Enzyme linked receptor signaling pathways</td>
<td></td>
</tr>
<tr>
<td>9.4. Network and cross-talk between different signal mechanisms</td>
<td></td>
</tr>
<tr>
<td>10. Programmed cell death</td>
<td>2</td>
</tr>
</tbody>
</table>

Recommended Books

Suggested Reading

SEMMESTER – II

MGM201: DNA Technology & Genetic Engineering

1. Enzymes used in DNA technology
 1.1. Restriction and modification enzymes
 1.2. Other nucleases
 1.3. Polymerases
 1.4. Ligase, kinases and phosphatases.

2. Cloning vectors
 2.1. Plasmids
 2.2. Phages
 2.3. Cosmids
 2.4. Artificial chromosomes
 2.5. Shuttle vectors
 2.6. Expression vectors

3. Construction of genomic and cDNA libraries

4. Screening and characterization of clones
 4.1. Preparation of probes
 4.2. Principles of hybridizations and hybridization based techniques (colony, plaque, Southern, Northern and in situ hybridizations)
 4.3. Expression based screening
 4.4. Interaction based screening: yeast two-hybrid system

5. Basic principles and applications of the following techniques
 5.1. DNA sequencing
 5.2. Oligonucleotide synthesis
 5.3. Polymerase Chain Reaction
 5.4. Microarray
 5.5. DNA fingerprinting.

6. Promoter characterization: promoter analysis through reporter genes, electrophoretic mobility shift assay, DNA foot-printing

7. Mutagenesis
 7.1. Site directed mutagenesis
 7.2. Transposon mutagenesis
 7.3. Construction of knock-out mutants.

8. Gene transfer techniques
 8.1. Electroporation and microinjection
 8.2. Transfection of cells: Principles and methods
 8.3. Germ line transformation in Drosophila and transgenic mice: Strategies and methods

9. Genome editing using CRISPR/Cas9 system

10. Applications of Recombinant DNA Technology
10.1. Crop and live-stock improvement
10.2. Gene therapy: somatic and germ line gene therapy
10.3. DNA drugs and vaccines

Recommended Books

MGM202: Bioinformatics and Biotechniques
Credits: 3

Section A: Bioinformatics

<table>
<thead>
<tr>
<th>Lecture hours</th>
<th>Definition and Scope of Bioinformatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Major Bioinformatics Databases & Resources</td>
</tr>
<tr>
<td>3</td>
<td>Biological Sequence Analysis</td>
</tr>
<tr>
<td>3.1</td>
<td>Sequence Similarity, Homology and Alignment: Pairwise sequence Alignment, Global & Local Alignment, Basic concept of scoring matrices,</td>
</tr>
<tr>
<td>3.2</td>
<td>BLAST and PSI-BLAST tools</td>
</tr>
<tr>
<td>3.3</td>
<td>Multiple sequence alignment and its application</td>
</tr>
<tr>
<td>3.4</td>
<td>A primer on computational phylogenetic analysis</td>
</tr>
<tr>
<td>4</td>
<td>Computational Gene Prediction (basic concept)</td>
</tr>
<tr>
<td>5</td>
<td>Protein Structure Bioinformatics:</td>
</tr>
<tr>
<td>5.1</td>
<td>Protein Data Bank (PDB)</td>
</tr>
<tr>
<td>5.2</td>
<td>Schematic representations of protein structure and analysis</td>
</tr>
<tr>
<td>5.3</td>
<td>Protein structure classification database</td>
</tr>
<tr>
<td>5.4</td>
<td>Computational protein structure prediction: Homology Modeling</td>
</tr>
</tbody>
</table>

Recommended Books
Section B: Biotechniques

1. Basic knowledge of principles and applications of the following microscopy techniques
 1.1. Light Microscopy
 1.2. Dark-field Microscopy
 1.3. Phase-contrast Microscopy
 1.4. Fluorescence Microscopy
 1.5. Confocal Microscopy
 1.6. Electron Microscopy
 1.7. Photography, Digital imaging and image Processing.

2. Biochemical techniques
 2.1. Centrifugation: types of rotors, clinical, highspeed and ultracentrifuges
 2.2. Colorimetry and spectrophotometry: Beer-Lambert law; absorption spectrum, fluorescence spectrum, introduction to mass spectrometry
 2.3. Chromatography: Paper, Thin layer chromatography; Columns: ion-exchange, gel-filtration, HPLC and affinity columns, electrophoresis
 2.4. Tracer techniques: Properties and units of radioactivity; half-life; measurement of radioactivity by GM counter, liquid scintillation counter; autoradiography; radio-immunoassay; safety rules in handling of radioisotopes and hazardous chemicals.

3. Introduction to nanotechnology.

4. Omics
 4.1. Highthroughput Sequencing technologies: Genomic and transcriptome analysis by NGS
 4.2. Metabolomics: Introduction and overview of metabolites, applications of non-tracer and tracer based techniques, application of metabolomics

5. Biosafety
 5.1. Introduction of bio-safety,
 5.2. Biotechnology and bio-safety concerns at the level of individuals, institutions, society, region, country and world with special emphasis on Indian concerns.
 5.3. Primary Containment for Biohazards
 5.4. Biosafety practices in laboratory: laboratory associated infections and other hazards,
 5.4. Assessment of biological hazards and level of biosafety.
 5.5. Bio safety regulation: Special procedures for recombinant DNA based product production & handling of rDNA products and process in industry and in institutions (Indian context).
 5.6. Roles of Institutional Biosafety Committee

Recommended Books

10. Laboratory Biorisk Management: Biosafety and Biosecurity - CRC Press, Reynolds M. Salerno, Jennifer Gaudioso, 2015
1. **Dictyostelium discoideum:**
 1.1. An overview: life cycle
 1.2. Use of *Dictyostelium* as a model system

2. **Yeast:**
 2.1. Tetrad analysis, yeast mating type switch
 2.2. Use as a model system to study cell cycle, genetic recombination

3. **Caenorhabditis elegans:**
 3.1. Isolation & identification of mutants
 3.2. Study of cell lineage, apoptosis
 3.3. RNA interference

4. **Drosophila:**
 4.1. Advantages in genetic analysis
 4.2. Nomenclature of gene mutation, Balancer chromosomes
 4.3. Mutagenesis and isolation of new variants
 4.4. Generation of somatic and germline mosaics
 4.5. Targeted overexpression of genes
 4.6. *Drosophila* genome, online databases and other resources
 4.7. Use of *Drosophila* as a model organism to study human genetic disorders and for drug screening

5. **Zebrafish:**
 5.1. Isolation and identification of mutants, use of Morpholinos
 5.2. Zebrafish as a model system for the study of human diseases
 5.3. Zebrafish genome and online resources

6. **Mouse:**
 6.1. Relationship between human and mouse chromosomes
 6.7. Advantages to use as a model organism
 6.3. Understanding gene function by transgenic and knockout studies
 6.4. Mouse genome database
 6.5. Humanized mice

Recommended Books

Suggested Reading
1. www.flybase.org
2. www.zfin.org
3. www.jax.org
4. Research papers
MGM204: Genomic instability and Cancer

Credits: 3
Lecture hours: 13

1. **DNA repair**
 1.1. Origins and types of DNA damage
 1.2. DNA repair pathways
 1.3. Error-prone repair and mutagenesis
 1.4. Damage signaling and checkpoint arrest.

2. **Recombination**
 2.1. Homologous recombination: models and molecular mechanisms
 2.2. Gene conversion: molecular mechanisms
 2.3. Site specific recombination
 2.4. Transposons and transposition mechanisms.

3. **Cell transformation and tumourigenesis**
 3.1. Cell cycle check point and cancer
 3.2. Oncogenes
 3.3. Tumour suppressor genes
 3.4. DNA repair genes and genetic instability
 3.5. Epigenetic modifications, telomerase activity, centrosome malfunction
 3.6. Genetic heterogeneity and clonal evolution.

4. **Familial cancers:** Retinoblastoma, Wilms’ tumour, Li-Fraumeni syndrome, colorectal cancer, breast cancer.

5. **Genetic predisposition to sporadic cancer**

6. **Tumour progression:** angiogenesis and metastasis

7. **Tumour specific markers**

8. **Cancer and environment:** physical, chemical and biological carcinogens

Recommended Books

7. Research papers and Review articles

MGM205: Human Genome

Credits: 3
Lecture hours: 13

1. **The Genome project**
 1.1. History, organization and goals of human genome project
 1.2. Mapping strategies, current status of various maps; DNA segment nomenclature
 1.3. Human genome diversity

2. **Organization of human genome**
 2.1. Mitochondrial genome
 2.2. Gross base composition of nuclear genome
 2.3. Gene density
 2.4. CpG islands
 2.5. RNA-encoding genes
 2.6. Functionally identical/similar genes
 2.7. Diversity in size and organization of genes
 2.8 Annotation

3. **Gene families**
 3.1. Multigene families – Classical gene families, families with large conserved domains,
families with small conserved domains
3.2. Gene superfamilies
3.3. Gene families in clusters
3.4. Pseudogenes
3.5. Repetitive DNA and transposable elements
3.6. Origin of gene families

4. Comparative Genomics
 4.1. Overview of prokaryotic and eukaryotic genomes
 4.2. C-value, number of genes and complexity of genomes
 4.3. Conservation and diversity of genomes
 4.4. Comparative genomics as an aid to gene mapping and study of human disease genes

5. Functional genomics
 5.1. Transcriptome and its analysis
 5.2. Proteome and Proteomics
 5.3. Gene silencing

6. Disease and genomics

Recommended Books

Suggested Reading

MGM206: Reproductive Genetics

| Credits: 2 |
| Lecture hours |

1. Male and female reproductive systems
 1.1 Gonads and differentiation of sexual characters
 1.2 Hormonal regulation of sexual differentiation
2. Gametogenesis and Embryonic development
 2.1 Differentiation of germ cells and gametogenesis
 2.2 Fertilization and implantation
 2.3 Stages of human embryonic development
3. Reproductive disorders
 3.1 Disorders of gonads, genital tracts and genitalia
 3.1.1 Pseudohermaphroditism
 3.1.2 True hermaphroditism
 3.1.3 Gonadal dysgenesis
 3.1.4 Anomalies of genital ducts
 3.2 Infertility
 3.2.1 Genetic basis of male infertility
 3.2.2 Genetic basis of female infertility
 3.3 Genetics of Pregnancy loss
 3.4 Congenital malformations and teratogenesis
4. Technologies in reproductive assistance
5. Prenatal and pre-implantation diagnosis
 5.1 Indications for prenatal diagnosis
5.2 Indications for chromosomal testing
5.3 Noninvasive methods
5.4 Invasive methods
6. Legal and ethical considerations

Recommended Books

Suggested Reading
1. Y.W. Loke and Ashley King. Human Implantation: Cell Biology and Immunolgy.
3. FG Cunningham. Williams Obstetrics.

SEMESTER – III

MGM301: Human Molecular Genetics
Credits: 3
Lecture hours

1. Genetic mapping of Mendelian traits
 1.1. Identifying recombinants and nonrecombinants in pedigrees
 1.2. Genetic and physical map distances
 1.3. Genetic markers
 1.4. Two-point mapping - LOD score analysis
 1.5. Multipoint mapping
 1.6. Homozygosity mapping.

2. Genetic mapping of complex traits
 2.1. Difficulties in mapping complex traits
 2.2. Allele sharing methods - Affected sib pair analysis
 2.3. Allelic association, Linkage disequilibrium mapping, Transmission disequilibrium test

3. Physical mapping methods
 3.1. Low resolution mapping - Cell hybrids, mini- and microcells, synteny of genes, Radiation hybrid mapping
 3.2. Assembly of clone contigs
 3.3. Identifying genes in cloned DNA
 3.4. Integration of cytogenetic, genetic and physical maps

4. Identifying human disease genes
 4.1. Principles and strategies
 4.2. Position-independent and positional cloning, Candidate gene approaches, Whole Genome and Exome Sequencing
 4.3. Confirming a candidate gene: mutation screening, testing in animal models.
5. Molecular pathology

5.1. Nomenclature of mutations and their databases
5.2. Loss-of-function and gain-of-function mutations in diseases
5.3. Instability of the human genome: Pathogenicity associated with repeat sequences

6. DNA testing

6.1. Direct testing.
 6.1.1. Screening for unknown mutations
 6.1.2. Detection of known mutations.
6.2. Indirect testing – gene tracking
6.3. DNA profiling: establishing identity and relationships

Recommended Books

Suggested Reading

MGM302: Clinical Genetics Credits: 3
Lecture hours

1. An overview of the genetic basis of syndromes and disorders
2. Monogenic diseases with well known molecular pathology
 2.1. Cystic fibrosis
 2.2. Tay-Sachs syndrome
 2.3. Marfan syndrome
4. Neurofibromatosis I
5. Disorders of muscle
 5.1. Dystrophies (Duchenne Muscular dystrophy and Becker Muscular Dystrophy)
 5.2. Myotonia
 5.3. Myopathies
6. Disorders of Haemopoietic systems
 6.1. Overview of Blood cell types and haemoglobin
 6.2. Sickle cell anemia
 6.3. Thalassemias
 6.4. Hemophilias
7. Disorders of eye
 7.1. Retinitis pigmentosa
 7.2. Cataract

15
7.3. Glaucoma
7.4. Colour blindness
8. Multifactorial diseases
 8.1. Hyperlipidemia
 8.2. Atherosclerosis
 8.3. Diabetes mellitus
9. Mitochondrial syndromes
10. Inborn errors of Metabolism and their genetic basis
 10.1. Phenylketonuria
 10.2. Maple Syrup urine syndrome
 10.3. Mucopolysaccharidosis
 10.4. Galactosemia
11. Genetic disorders in skeleton and skin
12. Management of genetic disorders

Recommended Books:

MGM303: Developmental Genetics

1. Early development
 1.1. Fertilization
 1.2. Types of cleavage
 1.3. Gastrulation: Cell movement and formation of germ layers in frog, chick and mouse
 1.4. Concept of determination, competence and differentiation.
2. Development of vertebrate nervous system
 2.1. Formation of neural tube
 2.2. Formation of brain regions
 2.3. Tissue architecture of the central nervous system
3. Genetics of pattern formation
 3.1. Caenorhabditis: Vulva formation
 3.2. Drosophila.
 3.2.1. Maternal genes and formation of body axes
 3.2.2. Segmentation genes
 3.2.3. Homeotic genes function
 3.2.4. Imaginal disc development.
 3.3. Vertebrates
 3.3.1. Axes formation and HOX genes
 3.3.2. Limb formation in chick
4. Programmed rearrangements in genes
 4.1. Chromatin diminution
 4.2. Endoreplication cycles
 4.3. Gene amplification.
5. Genetic determination of sex in Caenorhabditis, Drosophila and mammals
6. Epigenetics in development

Credits: 3
Lecture hours: 5
14
4
3
2

16
7. Regeneration
8. Senescence
9. Embryonic stem cells and their applications

Recommended Books

MGM304: Immunogenetics

<table>
<thead>
<tr>
<th>Lecture hours</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Biology of the immune system.</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Biology of Immune cells: Dendritic cells monocytes and macrophages, Granulocytes, Natural killer cells, Lymphocytes</td>
<td></td>
</tr>
<tr>
<td>1.3 Organs of the immune system</td>
<td></td>
</tr>
<tr>
<td>2 Innate Immunity,</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Characteristics, components and functions,</td>
<td></td>
</tr>
<tr>
<td>2.2 Toll like receptors and other immune receptors.</td>
<td></td>
</tr>
<tr>
<td>2.3 Newborn Immunology</td>
<td></td>
</tr>
<tr>
<td>3 Adaptive Immunity</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Humoral and Cell mediated Immune responses</td>
<td></td>
</tr>
<tr>
<td>3.1.1 Antigens</td>
<td></td>
</tr>
<tr>
<td>3.1.2 Structure and function of immunoglobulins and T cell receptors</td>
<td></td>
</tr>
<tr>
<td>3.4 B and T cell receptors and coreceptors</td>
<td></td>
</tr>
<tr>
<td>3.5 Antigen-antibody interactions</td>
<td></td>
</tr>
<tr>
<td>4. Basic and advanced Immunological Techniques</td>
<td>2</td>
</tr>
<tr>
<td>Principles and modalities of Immunodiffusion techniques, Agglutination, ELISPOT, RIA, ELISA, Western blotting Immunoprecipitation, Immuno-histochemistry, and Flow-cytometry</td>
<td></td>
</tr>
<tr>
<td>5. B cell receptor genes (Immunoglobin)</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Organization of Ig gene loci</td>
<td></td>
</tr>
<tr>
<td>5.2 Molecular mechanisms of generation of antibody diversity</td>
<td></td>
</tr>
<tr>
<td>5.3 Expression of Ig genes</td>
<td></td>
</tr>
<tr>
<td>5.4 Regulation of Ig gene transcription</td>
<td></td>
</tr>
<tr>
<td>5.5 Monoclonal Antibody and expression using recombinant DNA technologies</td>
<td></td>
</tr>
<tr>
<td>6. T cell receptor genes</td>
<td>2</td>
</tr>
<tr>
<td>6.1 Organization of TCR gene loci</td>
<td></td>
</tr>
<tr>
<td>6.2 Generation of TCR diversity</td>
<td></td>
</tr>
<tr>
<td>7. The HLA complex</td>
<td>3</td>
</tr>
<tr>
<td>7.1 Organization of HLA complex</td>
<td></td>
</tr>
<tr>
<td>7.2 Structure of class I and II HLA molecules</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Expression of HLA genes
7.4 HLA polymorphism

8 Generation and regulation of immune responses
8.1 Antigen processing and presentation
8.2 MHC-restriction
8.3 Cytokines
8.4 T Cell Maturation, activation and differentiation
8.5 B Cell Generation, Activation and differentiation
8.6 Clonal selection and immunological memory
8.7 Complement system
8.8 Cell mediated cytotoxic responses
8.9 Regulation of immune responses
8.10 Regulation of immune responses

9 Disorders of Human Immune System
9.1 Immunological Tolerance and Autoimmune diseases
9.2 Allergy and hypersensitivity
9.3 Cytokine-related diseases
9.4 Immunodeficiencies

10 Dynamics of the immune response in health and disease
10.1 Experimental models,
10.2 Immunotherapeutics and Drug targeting
10.3 Vaccines
10.4 Transplantation immunology

Recommended Books
1. Janeway&Traver’s Immunobiology (2016), Taylor & Francis
2. Abbas et al, Cellular and Molecular Immunology (2017), Saunders
3. Barrett, Text Book of Immunology (1988), Mosloy,
4. Benjamin et al, Immunology – A Short Course(2012), Wiley-Liss
5. Kuby, Immunology (2013), MacMillan,
6. Roitt, Essential Immunology (2017), Blackwell,
4.2. Balanced polymorphism and heterosis
4.3. Genetic coadaptation and linkage disequilibrium
5. Isolating mechanisms
6. Concept of species and modes of speciation: sympatric, allopatric, stasipatric
7. Molecular population genetics
 7.1. Molecular evolution (neutral theory, punctuated equilibrium)
 7.2. DNA-based phylogenetic trees
8. Nonrandom breeding
 8.1. Inbreeding and assortative mating
 8.2. Path diagram construction and inbreeding coefficient, allelic identities by descent
9. Human phylogeny
 9.1. Hominid evolution: anatomical, Geographical, Cultural
 9.2. Molecular phylogenetics of Homo sapiens
 9.3. Peopling of continents (Europe, Africa, Asia)
10. Population Substructure
 10.1. Hierarchical population structure
 10.2. Isolate breaking: The Wahlund principle

Recommended Books

Suggested Reading

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM306</td>
<td>Lab work based on courses MGM301 & MGM302</td>
<td>2</td>
</tr>
<tr>
<td>MGM307</td>
<td>Lab work based on courses MGM303 & MGM304</td>
<td>2</td>
</tr>
<tr>
<td>MGM308</td>
<td>SWAYAM Course</td>
<td>2</td>
</tr>
</tbody>
</table>
SEMESTER – IV

MGM401: Neurogenetics Credits: 3
Lecture hours 10

1. Nervous system
 1.1. Major regions of human brain
 1.2. Cellular components of nervous tissue
 1.3. Sub cellular organization of the nervous system
 1.4. Membrane potential and action potential.
 1.5 Neurotransmitters

2. Genetic Aspect of Learning and memory
 2.1. Classification of different types of memory
 2.2. Models for understanding learning and memory
 2.3. Molecular basis of short time and long time sensitization

3. Circadian rhythms
 3.1. Invertebrates (Drosophila)
 3.2. Mammals
 3.3. Clinical Implication

4. Neurogenetic disorders
 4.1. Syndromes due to triplet nucleotide expansion
 4.2. Alzheimers disease
 4.3. Parkinsons disease

5. Nature-nurture and behaviour
 5.1. Genetic experiments to investigate animal behaviour
 5.1.1. Selection studies
 5.1.2. Inbred strain studies
 5.2. Identifying genes for controlling behavior
 5.2.1. Induced mutations
 5.2.2. Quantitative trait loci
 5.2.3. Synteny/orthology
 5.3. Investigating the genetics of human behaviour
 5.3.1. Twin and adoption study designs, interpreting heritability
 5.3.2. Linkage and association studies
 5.4. Environmental influence- shared and non-shared environment

6. Genetics of Psychiatric diseases
 6.1. Schizophrenia
 6.2. Mood disorders
 6.3. Disorders of childhood.

Recommended Books

Suggested Reading
MGM402: Genetic counseling & Intellectual Property Rights

Credits: 2

Section A: Genetic counseling

Lecture hours

1. Historical overview of genetic counseling
 1.1 Models of Eugenic, Medical/Preventive, Decision making, Psychotherapeutic counseling; current definition and goals
 1.2 Philosophy and ethos of genetic services and counseling
2. Components of genetic counseling
 2.1 Indications and purpose
 2.2 Information gathering and construction of pedigrees
 2.3 Medical Genetic evaluation
 2.3.1 Basic components of Medical History
 2.3.2 Past medical history, social & family history
 2.4 Physical examination
 2.4.1 General and dysmorphology examination
 2.4.2 Documentation
3. Patterns of inheritance, risk assessment and counseling in common Mendelian and multifactorial disorders
4. Biochemical and Molecular genetic tests
 4.1 In Children
 4.2 Presymptomatic testing for late onset diseases (predictive medicine)
5. Bioethics in research
 5.1 Bioethics in cloning and stem cell research
 5.2 Bioethics in human and animal experimentation, animal rights/welfare

Recommended Books

Section B: Intellectual Property Rights

Lecture hours

1. Introduction
 1.1 Meaning, Relevance, Business Impact, Protection of Intellectual Property
 1.2 Copyrights, Trademarks, Patents, Designs, Utility Models, Trade Secrets and Geographical Indications
 1.3 Bio-diversity and IPR
 1.4 Competing Rationales for Protection of Intellectual Property Rights

2. Patents
 2.1 Concept of Patent
 2.2 Product / Process Patents & Terminology
 2.3 Duration of Patents- Law and Policy Consideration Elements of Patentability, Novelty and Non Obviousness (Inventive Steps and Industrial Application, Non-Patentable Subject Matter
 2.4 Procedure for Filing of Patent Application and types of Applications
 2.5 Procedure for Opposition,
 2.6 Revocation of Patents
 2.7 Ownership and Maintenance of Patents
 2.8 Assignment and licensing of Patents
 2.9 Working of Patents- Compulsory Licensing
 2.10 Patent Agent- Qualification and Registration Procedure

 3.1 Patent Offices in India
 3.2 Importance of Patent Information in Business Development
 3.3 Patent search through Internet, Patent Databases

Recommended Books
1. IPR Biosafety & Bioethics by DeepaGoel and ShominiParashar, 2013
 Patents for Chemicals, Pharmaceuticals and Biotechnology, by Phillip W Grubb, 2016

MGM 403: Lab work based on course MGM401 Credit: 1

MGM404: Seminar & Formulation of Research Project Credits: 2

The student will deliver a comprehensive seminar on a current topic of his/her choice in the field of Molecular & Human Genetics. The topic of Seminar must be different from the topics covered in any of the courses. Each student will formulate a research proposal and present the proposal before the panel of examiners.

MGM405: Comprehensive Viva-voce Credits: 2

The understanding of the whole course content from semester-I through semester-IV will be assessed through a comprehensive viva-voce examination.

MGM406: Dissertation Credits: 6

Each student will undertake an experimental project under supervision of one of the teachers during Semester-IV and submit two copies of the dissertation which will include: a) Review of
the relevant literature, b) Objectives of the study, c) Materials and Methods, d) Results/Observations (supported by figures/tables etc. as required), e) Discussion of the Results/Observations, f) Summary and g) References.